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Abstract

In this dissertation, we investigate the existence and abundance of finite torsors over

the regular locus of strongly F -regular singularities. We do this by studying how the

F -signature transforms under this type of finite cover. By restricting our attention to

étale torsors, we prove that the local étale fundamental group of a strongly F -regular

singularity is finite. In fact, we obtain effective bounds on its order in terms of the

F -signature.

In the general case, we prove that any strongly F -regular singularity X admits a

finite cover X? → X, with X? strongly F -regular, such that the X? has the following

property: for all finite group-schemes G whose connected component at the identity is

either trigonalizable or nilpotent, we have that every G-torsor over the regular locus

of X? is the restriction of a G-torsor over X?. As a consequence of that proof, we

conclude that strongly F -regular singularities admit no nontrivial unipotent torsors.

Along the way, we give a new Purity of the Branch Locus result for singularities

with F -signature larger than 1/2. We also obtain effective bounds on the torsion of

divisor class groups of strongly F -regular singularities, and globally F -regular varieties.

Additionally, we prove that canonical covers of strongly F -regular (resp. F -pure)

singularities are strongly F -regular (resp. F -pure).
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Chapter 1

Introduction

The present dissertation is concerned with the existence and measurement of nontrivial

“arithmetic” covers over the regular locus of a strongly F -regular singularity. The

nontriviality is in the sense that the cover does not come from restricting a cover over

the whole spectrum.

The more abundant these nontrivial covers are, the more severe the singularity is

considered to be. Thus, the problem we are concerned with is a study on the severity

of strong F -regularity, from an arithmetic point of view. In a nutshell, our main result

is that strong F -regularity imposes very strong conditions on the existence of these

arithmetic covers. According to this philosophy, this means that strongly F -regular

singularities are mild relative to this arithmetic sense.

To be precise, by an arithmetic cover V → U , we mean a G-torsor with respect to

a finite group-scheme G over an algebraically closed groundfield k. Notice that there

is a purity result for finite torsors [Mar16]. Thus, the abundance of finite torsors in

codimension 1 but not everywhere is a measurement of the severity of a singularity.

It is natural to split our study into two cases, namely, the case where G is étale

and the more general case where G may have a nontrivial connected component at

the identity.

In the étale case, our main result can be expressed by saying that the local étale

fundamental group of a strongly F -regular singularity is finite, with order prime to

the characteristic and bounded by the reciprocal of the F -signature.

In the general case, if R is the germ corresponding to our singularity, we aim to

prove the existence of a finite extension of germs R ⊂ S with the following property:

for an important class of finite group-schemes G, every finite G-torsor over the regular

locus of SpecS is the restriction of a G-torsor over SpecS. We prove this result for

1



2 Chapter 1. Introduction

the class of finite group-schemes whose connected component at the identity is either

trigonalizable or nilpotent. Moreover, we prove R ⊂ S is realized by successive finite

extensions

R ⊂ S1 ⊂ S2 ⊂ · · · ⊂ St = S

where Ri−1 = RGi
i for a linearly reductive finite group-scheme Gi, and the extension

Ri−1 ⊂ Ri induces a Gi-torsor on the regular loci, this for all i = 1, ..., t. That is, for

all i = 1, .., t the germ Ri−1 is the ring of invariants of Ri under the action of some

linearly reductive group-scheme Gi such that the corresponding finite cover is a torsor

over the regular locus. Our methods are still so effective that we get that the generic

degree of R ⊂ S is at most 1/s(R).

In this larger generality, the fact that the order of local étale fundamental group

of X = SpecR is prime to the characteristic is replaced by the statement that any

unipotent torsor over the regular locus of X extends across to a torsor over X, i.e. it

is the restriction of a torsor over X.

In either of the aforementioned cases, our arguments depend on a transformation

rule for the F -signature under finite morphism. For example, if (R,m,k, K) ⊂
(S, n,l, L) is a finite extension of domains equipped with an S-linear isomorphism

S → HomR(S,R), say 1 7→ T , such that T is surjective and T (n) ⊂ m, then the

following transformation rule holds

[l : k] · s(S) = [L : K] · s(R)

In this dissertation, we also give some major applications of this transformation

rule different from those mentioned above. Among others,

◦ we give a Purity of the Branch Locus Theorem for mild singularities,

◦ we provide effective bounds for the torsion of the divisor class groups of strongly

F -regular singularities and also globally F -regular varieties,

◦ and finally, we answer positively a question by K.-i. Watanabe on whether all

(Veronese-type) cyclic covers of strongly F -regular (resp. F -pure) singularities

are strongly F -regular (resp. F -pure).

This dissertation is mostly based on the works [CST16], [Car17].



Chapter 2

Finite torsors and strong F -regularity

This dissertation is mostly concerned with finite torsors over strongly F -regular

singularities. Therefore, we shortly survey these two subjects, namely strongly F -

regular singularities and finite torsors. We dedicate one section to each of them. A

third section will summarize the simpler form torsors take over singularities.

2.1 Strong F -regularity

Let R be a Noetherian Fp-algebra with p a prime number. As a shorthand notation,

we will use q = pe throughout. Then we have the e-th Frobenius endomorphism

F e : R→ R, r 7→ rq, in such a way that for all R-module M , we denote by F e
∗M the

R-module obtained by restriction of scalars via F e.

We denote the R-bimodule HomR(F e
∗R,R) by CR

e . If µr : R → R denotes

multiplication by r ∈ R, then the leftR-module structure on CR
e is given by r·ϕ = µr◦ϕ

(post-multiplication by r), whereas the right R-module structure by ϕ · µr = ϕ ◦ F e
∗µr

(pre-multiplication by r). However, these two structures are compatible in the following

way r ·ϕ = ϕ·rq, thus often the left-module structure is determined by the right-module

one. Any module theoretic notion on CR
e is referred to the left one unless otherwise

explicitly stated.

We say that an Fp-algebra is F -finite if F e : R → R is (module) finite. This

is a very mild condition, for it always holds in “geometric” settings. For example,

essentially finite type algebras over a perfect field are F -finite. Moreover, the class of

F -finite Fp-algebras is closed under localization, quotients, adic completions, (strict)

Henselizations, and finite extensions. F -finite algebras are excellent [Kun76] and

always admit a dualizing complex [Gab04].

The next theorem is considered to be the genesis of F -singularity theory.

3



4 Chapter 2. Finite torsors and strong F -regularity

Theorem 2.1.1 (Kunz Theorem [Kun69a]). Let R be an Fp-algebra. Then R is

regular if and only if F e : R→ R is flat. In case R is F -finite, R is regular if and and

only if F e : R→ R is locally free. In that case, the rank of F e
∗R at p is necessarily qδ

where δ = dimRp +
[
k(p)1/p : p

]
.

Therefore, singularity theory in positive characteristic is concerned with deviations

of the Frobenius endomorphisms from being flat or free. The study of those deviations

is simply called F -singularity theory. The following definition is due to M. Hochster

and J. Roberts [HR76, HR74].

Definition 2.1.2 (F -purity). An Fp-algebra R is said to be F -pure if F e : R→ R is

pure as a map of R-modules for some (then all) e ∈ N. If R is F -finite, F e : R→ R is

pure if and only if it is split as an R-linear map. This means that R is a free summand

of F e
∗R. Any surjective map ϕ ∈ CR

e is called an F -splitting.

Setup 2.1.3. In this dissertation, we will work exclusively with Noetherian and F -

finite algebras and schemes. More generally, if X is a Fp-scheme, we say it is F -finite

if the Frobenius endomorphism F e : X → X is finite.

The next type of F -singularity is the heart of this dissertation. Its conception and

initial properties are due to M. Hochster and C. Huneke.

Definition 2.1.4 (Strong F -regularity [HH89]). An Fp-algebra R is said to be strongly

F -regular if for all r ∈ R◦ there exists e ∈ N and ϕ ∈ CR
e such that ϕ(F e

∗ r) = 1. In

other words, every r ∈ R◦ will generate a free summand of F e
∗R for e� 0.

Theorem 2.1.5 (Basic properties of strong F -regularity [HH89]). We have the fol-

lowing properties about strong F -regularity.

(a) Regularity implies strong F -regularity, whereas strong F -regularity implies F -

purity.

(b) R is strongly F -regular if and only if Rp is strongly F -regular for all p ∈ SpecR.

(c) A local ring (R,m) is strongly F -regular if and only if R̂m is strongly F -regular.

(d) A strongly F -regular algebra is a product of strongly F -regular domains.

(e) Strongly F -regular domains are normal and Cohen–Macaulay.
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There is an additional aspect of strong F -regularity that is of vital importance in

this work; namely, strongly F -regular singularities are splinters. See [Ma88] for an

extended discussion on splinters, c.f. [Hoc73].

Definition 2.1.6 (Splinters). A ring R is said to be a splinter if it splits off from

any finite extension, that is, if R is a direct summand, as an R-module, of any finite

extension ring.

For a classification of 2-dimensional strongly F -regular and F -pure singularities,

see [Har98b]. On the other hand, it is well known that normal toric rings are strongly

F -regular.

It is well known that strongly F -regular rings in positive characteristic are splinters,

from [HH94] and [Hoc77]. The converse statement is one of the main conjectures

in commutative algebra. It is known to hold in the excellent Q-Gorenstein case

[Sin99, HH94]. Clearly, splinters are F -pure.

2.1.1 F -singularities of pairs

In this subsection, we extend the above definitions to pairs. However, before doing

that, we recall some basic notions of divisors on normal schemes.

An interlude on divisors

Let R be a normal domain of essentially finite type over a field k with fraction field

K and X = SpecR, or more generally, let X be a normal integral scheme. We denote

by Div(X) the abelian group of Weil divisors on X, i.e. the free abelian group

generated by the height-1 prime ideals of R. One then has a group homomorphism

K× → Div(X). One says that a (Weil) divisor D is effective if its order at every prime

is nonnegative; one writes D ≥ 0. Every nonzero rational function f ∈ K× defines a

principal divisor divR f . Its order at p is by definition the order of f in the discrete

valuation ring Rp. Two divisors are linearly equivalent, say D1 ∼ D2, if D1 −D2 is

principal.

Let D be a divisor on X; one defines OX(D) ⊂ K to be the quasi-coherent sheaf

associated to the R-module

R(D) := {f ∈ K× | divR f +D ≥ 0} ∪ {0}.
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In particular, R ⊂ R(D) if D is effective.

The mapping D 7→ OX(D) gives a bijective correspondence in between Weil divisors

on X and reflexive rank 1 subsheaves of K,1 the constant sheaf of rational functions.

One says D is Cartier if OX(D) is invertible. We also consider the Q-space of Q-

divisors Div(X)⊗Z Q. The twist R(∆) of R by a Q-divisor ∆ works verbatim as in

the integral case. A Q-divisor ∆ is called Q-Cartier if there is n ∈ N such that n∆ is

a Cartier integral divisor. A canonical divisor on X is by definition a Weil divisor

KR = KX on X so that OX(KX) is isomorphic to the dualizing sheaf 2 ωX .

Our next goal is to use the formalism of divisors to understand sections of finite

extensions R ⊂ S of normal domains. Let f : Y → X be the corresponding morphisms

of schemes. Choose canonical divisors KR and KS for R and S, respectively. We

have that the relative canonical module ωS/R := HomR(f∗S,R) is a reflexive rank 1

S-module; we want to realize it as S(D) for some divisor D.

For this, we recall first the notion of pullback of divisors under finite morphisms.

Let ∆ be a Q-divisor on X. One defines f ∗∆ on Y as follows. The order of f ∗∆ at

a height-1 prime ideal of S, say q, is the product e · a, where a is the order of ∆ at

p = f(q) = q ∩R and e is the ramification index of f along q.3

Example 2.1.7 (Pullback along Frobenius). Let F e : R → R be the e-th Frobenius

endomorphism, then (F e)∗∆ = q∆ for all Q-divisor ∆. This is simply because the

ramification index of F e along any height-1 prime is q.

Next, we observe the following,

HomR(f∗S,R) ∼= HomR

(
f∗S ⊗R R(KR), R(KR)

) ∼= HomR

(
f∗S(f ∗KR), R(KR)

)
∼= f∗HomS

(
S(f ∗KR), S(KS)

)
∼= f∗HomS

(
S, S(KS − f ∗KR)

)
∼= f∗S(KS − f ∗KR)

1A coherent sheaf/module M is reflexive if the natural map M → M∨∨ is an isomorphism.
On a normal scheme, this is equivalent to the second Serre’s condition S2 on the local depths
depthMx ≥ min{2,dimOX,x} for all x ∈ X; see [Har94, Theorem 1.9] for further details. By rank,
we mean generic rank.

2Since X is assumed F -finite, it has a dualizing complex ω•X [Gab04]. In case X is Cohen–
Macaulay, ω•X is concentrated in degree dimX and one calls that sheaf the dualizing sheaf of X. In
general, one defines the dualizing sheaf on X as the unique reflexive sheaf on X agreeing with the
dualizing sheaf on the Cohen–Macaulay locus.

3Namely, e is the order of any uniformizer of Rp in the DVR Sq.
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where we used [Har77, Chapter II, Exercises 5.1 and 5.2], which are valid, up

to reflexification, on a normal scheme X with E reflexive (rather than just lo-

cally free of finite rank). For example, we used the projection formula to say(
f∗S ⊗R R(KR)

)∨∨ ∼= f∗S(f ∗KR) and therefore, HomR

(
f∗S ⊗R R(KR), R(KR)

)∼=
HomR

(
f∗S(f ∗KR), R(KR)

)
in the second isomorphism. We also used duality for finite

morphisms [Har77, Chapter III, Exercise 6.10] in the third isomorphism.

This gives an isomorphism of S-modules ωS/R ∼= S(KS − f ∗KR). Thus, to every

nonzero R-linear map T : f∗S → R, there corresponds an effective divisors on Y ,

say DT , linearly equivalent to KS − f ∗KR =: KS/R, the relative canonical divisor.

Moreover, two maps T1, T2 : f∗S → R correspond to the same divisor if and only if

T1 = T2 · u for some unit u ∈ S×. In other words, there is a bijection

ωS/R
/
S×

∼=−→
{
D ∈ Div(X)

∣∣ D ≥ 0 and D ∼ KS/R

}
, T 7→ DT .

In practice, one may compute DT as follows. Let q be a height-1 prime ideal of S;

to compute the order or coefficient of DT at q, we consider p = f(q) = q ∩R. Then

Rp ⊂ Sp is a finite extension with Rp a DVR and Sp a semi-local Dedekind domain,

then a PID and Gorenstein. In particular, HomRp(Sp, Rp) is a free Sp-module of rank

1. After a choice of a free generator, then any map in HomRp(Sp, Rp) corresponds

to a unique s ∈ Sp. Although s depends on the choice of the generators, divSp s

certainly does not. This is in fact what the formalism of divisors really does: maps in

HomRp(Sp, Rp) are in correspondence with principal divisors divSp s on SpecSp. Now,

let divSp sT be the divisor on SpecSp corresponding to Tp = T ⊗R Rp. Then, the

coefficient of DT at q is the coefficient of divSp sT at qSp.

Example 2.1.8 (Trace and Ramification). Suppose R ⊂ S is generically separable,

and let K ⊂ L be the corresponding generic extension. It is not difficult to see that

the trace map TrL/K : L→ K restricts to a map TrS/R : S → R on the integral level.4

We have that TrS/R corresponds to the ramification divisor Ram.5 A proof and further

details can be found in [ST14, Proposition 4.8]. However, showing this reduces, after

4Indeed, if s ∈ S ⊂ L, then its minimal polynomial over K has coefficients in R; see [AM69,
Proposition 5.15]. However, TrL/K(s) is a Z-multiple of one of those coefficients.

5The ramification divisor is defined as follows. Since R ⊂ S is generically separable, the module
of differentials ΩS/R is generically zero, so a torsion S-module. Then, one defines the order of Ram
at a height-1 prime ideal q to be the length of (ΩS/R)q as an Sq-module. Equivalently, if q∩R = p,
then the order of Ram at q is the same as the order of divSp

s at qSp for (s) = FittSp
ΩSp/Rp

.
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localizing at a height-1 ideal in SpecR, to proving that the Dedekind’s different ideal

equals the Kähler different ideal. For this last statement, see [Kun86, Proposition

10.17].

Remark 2.1.9. Additionally, the same computation in [Har77, Chapter IV, Proposition

2.2] shows that the order of Ram at q is at least eq − 1, where eq is the ramification

index of f : SpecS → SpecR along q. Moreover, equality holds if and only if

the extension of DVR’s Rf(q) ⊂ Sq is tame, meaning that eq is prime-to-p in case

char(k) = p > 0 and the extension of residue fields is separable.

Once we have chosen a section T ∈ ωS/R, we get an isomorphism ωS/R ∼= S(DT ).

This isomorphism can be made very explicit. Indeed, let T0 : L→ K be the localization

of T at the generic point. So that we have a commutative square

L
T0 // K

S
T //

⊂

OO

R

⊂

OO

By construction, S ⊂ S(DT ) ⊂ L is the largest S-submodule of L whose image

under T0 is contained in R. So it makes sense to say that T extends to a map

in HomR

(
f∗S(DT ), R

)
and this is its maximal extension to a S-submodule of L.

Moreover, the following map is an isomorphism of S-modules

S(DT )→ ωS/R, s 7→ T (s · −).

Following [Sch09], since R is F -finite,6 the previous discussion in particular applies

to the most important finite extension in this dissertation, namely F e : R → R. So

that we have an isomorphism of right R-modules

HomR(F e
∗R,R) ∼= R

(
KR − (F e)∗KR

) ∼= R
(
(1− q)KR

)
and a correspondence

CR
e

/
R×

∼=−→
{
D ∈ Div(X)

∣∣ D ≥ 0 and D + (q − 1)KR ∼ 0
}
, ϕ 7→ Dϕ

where the action of R× on CR
e is on the right (pre-multiplication). Normalizing Dϕ,

we define the Q-divisor

∆ϕ :=
1

q − 1
·Dϕ.

6Now assuming k has positive characteristic p.
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Then we have the bijection [Sch09]

CR
e

/
R×

∼=−→
{

∆ ∈ Div(X)⊗Z Q
∣∣ ∆ ≥ 0 and (q − 1)(∆ +KR) ∼ 0

}
, ϕ 7→ ∆ϕ.

We close this interlude by stating the “functoriality” property of T 7→ DT .

Proposition 2.1.10. Let A ⊂ B ⊂ C finite inclusions of normal domains with

corresponding morphisms of schemes Z
g−→ Y

f−→ X. If U ∈ ωC/B = HomB(g∗C,B)

and T ∈ ωB/A = HomA(f∗B,A), then

DT◦U = DU + g∗DT

on Z.

Proof. This equality can be proven after localizing at a height-1 prime ideal of A.

Concretely, this means that we can assume R to be a DVR and B and C semi-

local Dedekind domains, hence PID and Gorenstein. Therefore, we may choose free

generators Φ, Ψ for ωB/A and ωC/B as B-modules and C-modules, respectively.

Now, we claim Φ ◦ Ψ is a free generator of ωC/A. Although this can been seen

as abstract nonsense about upper-shriek functors and duality,7 we give a direct

proof for sake of completeness. Let γ : C → A in ωC/A. It defines a C-linear

map η : C → HomA(B,A) given by c 7→
(
b 7→ γ(bc)

)
. Moreover, η(c)(1) = γ(c)

for all c ∈ C. On the other hand, we have a B-isomorphism B → HomA(B,A),

1 7→ Φ; let β : HomA(B,A) → B be the inverse isomorphism. It has the property

Φ
(
β(φ)

)
= φ(1) for all φ ∈ HomA(B,A).8 By plugging in φ = η(c), we conclude that

the composition α = β ◦ η : C → B satisfies that Φ ◦ α = γ. But α = Ψ(c · −) for a

unique c ∈ C, then γ = (Φ ◦Ψ)(c · −), as claimed.

Next, let DU = divC u and DT = divB t. Then, U = Ψ(u · −) and T = Φ(t · −).

Therefore, T ◦ U = (Φ ◦Ψ)(ut · −) and

DT◦U = divC(ut) = divC u+ divC t = divC u+ g∗ divB t = DU + g∗DT .

This proves the proposition. K

7Namely, there are natural isomorphisms (f ◦ g)! → g! ◦ f ! [Har66].
8For by definition φ(−) = T

(
β(φ) · −

)
.
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Strong F -regularity of pairs

Let (R,∆) be a pair, i.e. R is a normal domain and ∆ an effective Q-divisor on

SpecR. Then we consider C∆
e ⊂ CR

e to be the R-subbimodule of maps ϕ : F e
∗R→ R

such that ∆ϕ ≥ ∆, i.e. Dϕ ≥ (q − 1)∆. But since Dϕ is integral, we have that this

“inequality” is equivalent to Dϕ ≥ d(q − 1)∆e. Therefore, by the interlude we had

on divisors and finite morphisms, this corresponds to the set of maps ϕ : F e
∗R→ R

admitting a (necessarily) unique extension to a map F e
∗R
(
d(q − 1)∆e

)
→ R. In other

words, C∆
e is just the restrictions of maps in HomR

(
F e
∗R
(
d(q− 1)∆e

)
, R
)

to F e
∗R via

the inclusion R ⊂ R
(
d(q − 1)∆e

)
. By abuse of notation, we simply write

C∆
e = HomR

(
F e
∗R
(
d(q − 1)∆e

)
, R
)
⊂ HomR(F e

∗R,R) = CR
e

having always in mind the above interpretations.

In this way, the concepts of F -purity and F -regularity generalize to pairs as follows

(approach due to K. Schwede).

Definition 2.1.11 (F -singularity of pairs [Sch10b]). Let (R,∆) be a pair. One says

(R,∆) is (sharply) F -pure if there exists ϕ ∈ C∆
e such that the composition

R
17→F e

∗ 1−−−−→ F e
∗R
(
d(q − 1)∆e

) ϕ−→ R

is the identity, i.e. ϕ(F e
∗ 1) = 1. The pair (R,∆) is said to be strongly F -regular if for

all 0 6= r ∈ R, there exists ϕ ∈ C∆
e such that the composition

R
1 7→F e

∗ r−−−−→ F e
∗R
(
d(q − 1)∆e

) ϕ−→ R

is the identity, i.e. ϕ(F e
∗ r) = 1.

Of course, the strong F -regularity (resp. F -purity) of a pair (R,∆) implies the

strong F -regularity (resp. F -purity) of R.

2.1.2 The F -signature

There is a numerical characterization of strong F -regularity, which we proceed to

describe in this subsection. To every local pair9 (R,m,k; ∆), one associates a real

number s(R,∆) ∈ [0, 1], the F -signature of the pair, with the following properties.

9In this case, we assume R is normal only if ∆ 6= 0, for normality is imposed to have a well-behaved
theory of divisors but is not required to define the F -signature.



2.1. Strong F -regularity 11

Theorem 2.1.12 (Properties of the F -signature). We have the following properties

(a) s(R,∆) = 1 if and only if R is regular and ∆ = 0 [HL02, Corollary 16],

[BST13b].10

(b) s(R,∆) = 0 if and only if (R,∆) is not strongly F -regular [AL03, Theorem 0.2],

[BST12, Theorem 3.18].

(c) The function p 7→ s(Rq,∆) is lower-semicontinous on SpecR [Pol18].

The F -signature for local rings was formally defined by C. Huneke and G. Leuschke

[HL02], although it was implicit in [SdB97]. Nonetheless, the proof of its existence

only came years later by the work of K. Tucker [Tuc12]. The formulation for pairs

(and for general Cartier algebras) was given in [BST12] by M. Blickle, K. Schwede, and

K. Tucker. We strongly recommend [PT18] for further details and simplified proofs.

It is worth remarking that the F -signature is often thought of as a volume attached

to the singularity or pair. This intuition is for example supported by the work of M.

Von Korff [Von12] where the F -signatures of toric singularities and pairs are realized

as the volumes of polytopes; compare with the earlier results [BST12, Theorem 4.20],

[iWiY04, Sin05].

To define the F -signature s(R,∆) of a pair, we need to define first the F -splitting

numbers ae(R,∆). There are at least three equivalent ways to define these numbers.

The first and more intuitive way is to say it is the largest rank a of a free R-module

R⊕a that F e
∗R maps onto such that all the a projections

F e
∗R→ R⊕a → R

are in C∆
e . Equivalently, it is the maximum rank of a free direct summand of F e

∗R

as an R-module whose splitting maps F e
∗R→ R are all in C∆

e . Therefore, it can be

computed as follows

aR,∆e = λR

(
C∆
e

/ (
C∆
e

)ns
)

= λR

(
F e
∗R
/
F e
∗ I

∆
e

)
= qα(R) · λR

(
R
/
I∆
e

)
where

(
C∆
e

)ns ⊂ C∆
e is the subbimodule of nonsurjective maps, i.e.(

C∆
e

)ns
= HomR

(
F e
∗R
(
d(q − 1)∆e

)
, R
)
∩ HomR(F e

∗R,m)

10Indeed, if s(R,∆) = 0, then R is regular, forcing ∆ to be Q-Cartier, say ∆ = t · divR f for some
f ∈ R and rational t ∈ Q. Then s(R,∆) = s(R, f t) as treated in [BST13b]. If s(R, f t) = 0, then it
follows (f) = R by [BST13b, Theorem 4.6].
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I∆
e is the ideal of R given by

I∆
e =

{
r ∈ R

∣∣ ϕ(F e
∗ r) ∈ m for all ϕ ∈ C∆

e

}
and pα(R) :=

[
k1/p : k

]
.

Notice that the largest ae(R,∆) can be is the generic rank of F e
∗R as an R-module.

That is,

0 ≤ ae(R,∆) ≤ qδ

where δ = dimR + α(R). In fact, qδ is no other but the value ae(R,∆) takes when R

is regular and ∆ = 0. In this fashion, the ratio

0 ≤ ae(R,∆)

qδ
≤ 1

is a measurement of the severity of the singularity (R,∆). As a matter of fact, the

limit of these ratios as e goes to infinity exists [Tuc12, BST12, PT18]. That limit

is by definition the F -signature s(R,∆) of the pair (R,∆). However, it is unknown

whether or not the F -signature is rational. Nevertheless, a conjecture of P . Monsky

[Mon08, Conjecture 1.5] would imply the existence of a singularity with irrational, but

algebraic, F -signature. In fact, this conjecture would imply that the F -signature of

R = F2Jx, y, z, u, vK
/ (

uv + x3 + y3 + xyz
)

is 2
3
− 5

14
√

7
; see [Tuc12, Proposition 4.22]

for further details.

Remark 2.1.13. We point out that in the present work, we will compute the F -splitting

numbers ae(R,∆) as the R-lengths of C∆
e

/ (
C∆
e

)ns
. We will not compute them as

the R-colengths of the ideal I∆
e in what follows. This is a major difference between

the approach in this dissertation and the one in [CST16].

The following property will be important later on. It in particular implies that

strong F -regularity is invariant under (strict) Henselizations.

Proposition 2.1.14 ([Yao06, CST17]). Let (R,m)→ (S, n) be a local faithfully flat

homomorphisms, and let f : SpecS → SpecR be the corresponding morphism of

schemes. Let ∆ be a Q-divisor on SpecR (if R is normal). If the closed fiber of f is

regular, then s(S, f ∗∆) = s(R,∆). In particular, the F -signature is invariant under

(strict) Henselizations and m-adic completions (then so is strong F -regularity).
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2.1.3 Connection with the Minimal Model Program

In this section, we briefly recall the relationship between F -singularities and the

singularities in the Minimal Model Program (MMP). Our main goal with this is to

illustrate that F -singularity theory interacts with the field of birational geometry. We

invite the reader to glimpse any of the excellent surveys [Pat16, PST17, SZ15] for

additional information on this rich, deep connection.

Let (R,∆) be a pair11 over a field k of any characteristic. One says that (R,∆)

has Kawamata log terminal (KLT) singularities (resp. log canonical singularities) if

KX+∆ is Q-Cartier and for all normal k-variety Y and all proper birational morphism

f : Y → X, we have that the coefficients/orders of f ∗(KX + ∆) − KY are strictly

less than 1 (resp. less than or equal to 1). Then we have the following fundamental

theorem by N. Hara and K.-i. Watanabe.

Theorem 2.1.15 ([HW02]). Suppose k has positive characteristic. If (R,∆) is

strongly F -regular (resp. F -pure), then (R,∆) has KLT (resp. log canonical) singu-

larities.

One also has a partial converse statement in the context of reductions to positive

characteristic. More precisely, let (R,∆) be a pair over C. Let A be a finite Z-algebra

over which both R and ∆ are defined, and let (RA,∆A) be the corresponding model

of (R,∆) over A. We think of (SpecRA,∆A) → SpecA as a family of models of

the original pair (SpecR,∆), where fibers at the closed points of SpecA are positive

characteristic models whereas fiber is a characteristic 0 model. Colloquially, one says

that one spreads (R,∆) out to positive characteristic. One defines (R,∆) to have

strongly F -regular type (resp. F -pure type) if the closed fibers of (SpecRA,∆A) →
SpecA are strongly F -regular (resp. F -pure) for a Zariski dense of closed points in

SpecA.12 This definition is independent of the choice of A [HH06].

With these definitions in place, it follows that Theorem 2.1.15 implies that singu-

larities/pairs of strongly F -regular type (resp. of F -pure type) are KLT (resp. log

canonical). We have the following converse statement.

Theorem 2.1.16 ([Har98a, MS97, Har01, Smi97]). A KLT pair has strongly F -regular

type.

11Meaning R is a normal with ∆ a Q-divisor on X = SpecR.
12That is, dense in the maximal spectrum of A.
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The analogous statement implying that log canonical pairs have F -pure type is

true subject to the Weak Ordinarity Conjecture [MS11, Tak13, BST13a].

2.2 Finite torsors

In one sentence, a torsor is a fppf G-bundle for a group-scheme G. It is convenient

to begin by collecting the relevant notions about group-schemes and their action on

schemes and rings. For the most part, we will follow the treatment in [Mil17], [Tat97]

and [Mon93]. The proofs of all the statements, and definitions, can be found in these

references.

2.2.1 Affine group-schemes

Let k be a field, or more generally a ground ring. All fibered and tensor products are

defined over k unless otherwise explicitly stated. Recall that to an affine k-scheme

X, we associate a covariant functor (its functor of points) X : Algk → Set, which is

given by

X(−) = HomAlgk(O(X),−),

where Algk denotes the category of k-algebras. In fact, this association X 7→ X(−)

gives a fully faithful covariant functor from the category of affine k-schemes Affk to

the dual category of Algk, say Y : Affk → Alg∨k. This is just a restatement of Yoneda’s

lemma. In other words, the Yoneda’s functor Y realizes Affk as a full subcategory of

Alg∨k, say Y (Affk), which is called the category of representable functors.

A functor G in Alg∨k is said to be formally a group or a formal group over k if it

factors through the forgetful functor Grp→ Set:

Affk

""

G // Set

Grp

OO

Notice that this means that there are natural transformations ∇ : G×G→ G (group

product), e : ∗ → G (identity)13, and ι : G→ G (inversion), such that the following

13Here ∗ denotes the functor Algk → Set sending R to {∅}; it is the final object of the category
Alg∨k.
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diagrams of natural transformations are commutative

G×G×G ∇×id //

id×∇
��

G×G
∇
��

G×G ∇ // G

∗ ×G e×id //

p2 ∼=
��

G×G

∇xx
G

G×G id×ι, ι×id // G×G
∇
��

G

∆

OO

// ∗ e // G

where ∆ denotes the diagonal natural transformation.

An affine group over k, say G, is defined to be a representable functor in Alg∨k

that is formally a group over k. One also says that an affine scheme G is an affine

group-scheme over k (or group-scheme for short) if the functor Y (G) = G(−) is an

affine group.

By Yoneda’s lemma, the above definition is equivalent to saying that G is equipped

with morphisms of k-schemes∇, e, and ι satisfying the same formal set of commutative

diagrams we had above. Of course, affine groups are represented by group-schemes

and vice versa. We use these two equivalent perspectives interchangeably, hoping the

context makes clear which one is being used.

A (homo)morphism of affine groups G→ G′ is a natural transformation, which

additionally satisfies that G(R) → G′(R) is a homomorphism of groups for all k-

algebra R. Equivalently, if G, G′ are group-schemes, then a morphism of group-schemes

ϕ : G→ G′ is a morphism of k-schemes such that the square

G
ϕ // G′

G×G

∇

OO

ϕ×ϕ // G′ ×G′
∇′
OO

is commutative. This provides us with the category of affine groups over k.

The category of affine groups enjoys many similarities with the category of groups;

many of the basic aspects of the theory of groups carry over to group-schemes. For

instance, we can talk about the full subcategory of abelian affine groups, whose

objects are the affine groups G : Affk → Set that factor through the forgetful functor

Ab→ Set. This category is in fact an abelian category. Likewise, we have existence

of fibered products and general small (inverse) limits.14 This allows us to define the

kernel of any homomorphism of affine groups ϕ : G→ G′ to be the left-hand sided

14These are realized by the fibered products and limits of schemes.
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homomorphism in the following fibered product

G×G′ ∗ //

kerϕ
��

∗
e′

��
G

ϕ // G′

It turns out that kerϕ is a closed immersion of schemes. One can even make sense of

G/ kerϕ (back to this shortly).

Given and affine group G, there is a canonical algebra O(G) representing G. Indeed,

denote by A1 : Algk → Set the forgetful functor, then as a set O(G) := Mor(G,A1).

An element f ∈ O(G) can be then thought of as a compatible family of functions

fR : G(R) → R indexed by k-algebras R. The compatibility means that given a

homomorphism ϕ : R→ R′, the diagram

G(R)
fR //

G(ϕ)

��

R

ϕ

��
G(R′)

fR′ // R′

commutes. The addition and multiplication are then defined pointwise. For example,

f+f ′ is defined by (f+f ′)R(g) = fR(g)+f ′R(g) for all k-algebras R and all g ∈ G(R).

Thus, O(G) becomes a commutative ring, and the k-algebra structure k→ O(G) is

defined by cR(g) = c for all R and c ∈ G(R).

Moreover, there is a natural transformation G → HomAlgk(O(G),−) given by

g 7→ (f 7→ fR(g)) for all R, g ∈ G(R) and f ∈ O(G). In fact, G is representable if

and only if this natural transformation is a natural equivalence.

The above construction of the canonical algebra O(G) did not depend on G being an

affine group. However, if G happens to be an affine group, then O(G) is a commutative

Hopf k-algebra. Since this third perspective will be our working one, we will spend

several pages summarizing the most basic concepts, and terminology, of this subject.

Hopf algebras

Let us remember what the category of unitary associative k-algebras is. An associative

k-algebra with unit is a triple (A,∆, u), where A is a k-module, and ∆ : A⊗A→ A,

u : k → A are k-linear maps, called product and unit, respectively, such that the
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following diagrams are commutative:

A⊗ A⊗ A ∆⊗id //

id⊗∆
��

A⊗ A
∆
��

A⊗ A ∆ // A

k⊗ A u⊗id //

∼=
��

A⊗ A

∆
ww

A

A⊗k
id⊗u //

∼=
��

A⊗ A

∆
ww

A

Let τ : A⊗A→ A⊗A be the isomorphism a1 ⊗ a2 7→ a2 ⊗ a1. The algebra is said to

be commutative if additionally, the following triangle commutes

A⊗ A τ //

∆ ##

A⊗ A

∆{{
A

A k-linear map ϕ : A1 → A2 is a homomorphism of k-algebras if the following

diagram commutes

k
u2 // A2 A2 ⊗ A2

∆2oo

k

id

OO

u1 // A1

ϕ

OO

A1 ⊗ A1

ϕ⊗ϕ

OO

∆1oo

In this setting, an ideal I of A is defined to be a k-submodule such that ∆(A⊗I) ⊂ A

and ∆(I ⊗ A) ⊂ A. We have that ideals are exactly the kernels of homomorphisms.

Now, by reversing arrows, we get the dual notion of coassociative k-coalgebra

with counit. A k-module C is a k-coalgebra if it is endowed with k-linear maps

∇ : C → C ⊗ C, e : C → k, called coproduct and counit,15 satisfying a set of

commutative diagrams dual to the ones we had for algebras. Namely,

C ⊗ C ⊗ C C ⊗ C∇⊗idoo

C ⊗ C

id⊗∇

OO

C

∇

OO

∇oo

k⊗ C C ⊗ Ce⊗idoo

C
∇

77
∼=

OO C ⊗k C ⊗ Cid⊗eoo

C
∇

77
∼=

OO

The coalgebra is said to be cocommutative16 if additionally, ∇ = τ ◦ ∇.

A k-linear morphism ϕ : C1 → C2 is a homomorphism of k-coalgebras if the

following diagram commutes

k C2
e2oo ∇2 // C2 ⊗ C2

k

id

OO

C1
e1oo

ϕ

OO

∇1 // C1 ⊗ C1

ϕ⊗ϕ

OO

15However, we will sometimes refer to them as group product and identity, respectively.
16Or abelian.
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A k-submodule of I of C is a coideal if it satisfies ∇(I) ⊂ A⊗ I + I ⊗A. Likewise,

a quotient C/I inherits the coalgebra structure if and only if I is a coideal. Thus,

coideals correspond exactly to kernels of homomorphisms.

Remark 2.2.1. If (A,∆, u) and (A′,∆′, u′) are k-algebras as above, then A ⊗ A′ be-

comes a k-algebra with multiplication and unit given respectively by the composi-

tions:

(A⊗ A′)⊗ (A⊗ A′)
∼=−→ (A⊗ A)⊗ (A′ ⊗ A′) ∆⊗∆′−−−→ A⊗ A′,

k
∼=−→ k⊗k

u⊗u′−−−→ A⊗ A′.

Similarly, if (C,∇, e) and (C ′,∇′, e′) are k-coalgebras, then C ⊗ C ′ can be given

the structure of coalgebra by:

C ⊗ C ′ ∇⊗∇
′

−−−→ (C ⊗ C)⊗ (C ′ ⊗ C ′)
∼=−→ (C ⊗ C ′)⊗ (C ⊗ C ′),

C ⊗ C ′ e⊗e
′

−−→ k⊗k
∼=−→ k.

With the above remark in mind, we have the following proposition [Mon93, §1.3].

Proposition 2.2.2 ([Mon93]). Let B be a k-module so that (B,∆, u) is a k-algebra

and (B,∇, e) a k-coalgebra. Then the following two statements are equivalent:

(a) ∇ : B → B ⊗B and e : B → k are k-algebra homomorphisms.

(b) ∆ : B ⊗B → B and u : k→ B are k-coalgebra homomorphisms.

Therefore, we have the following definitions.

Definition 2.2.3 (Bialgebras and Hopf algebras). (a) Let (B,∆, u,∇, e) be as in

Proposition 2.2.2. We say it is a k-bialgebra if either of the equivalent conditions

in Proposition 2.2.2 holds. It is said to be commutative (resp. cocommutative)

if the underlying algebra (resp. coalgebra) is so. We have a notion of biide-

als ; these are the submodule being simultaneously ideals and coideals. Biideals

have the expected properties, e.g. quotients of bialgebras by biideals inherit

the bialgebra structure, and biideals correspond to kernels of bialgebras homo-

morphims. Any module-theoretic notion on the bialgebra is referred to as the

underlying algebra.
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(b) Let (B,∆, u,∇, e) be a k-bialgebra. An antipodal map (or just antipode for

short) is a k-algebra homomorphism ι : B → B for which both17 of the following

diagrams are commutative

B ⊗B id×ι, ι×id // B ⊗B
∆
��

B

∇

OO

//e // k
u // B

As a matter of fact, any bialgebra admits at most one antipode.

(c) A k-bialgebra admitting an antipodal map is known as a Hopf algebra over k

(or Hopf k-algebra). A homomorphism of Hopf k-algebras is defined simply

as a homomorphism of k-bialgebras (as the antipodal maps structures are au-

tomatically respected, i.e. a homomorphism of bialgebras commutes with the

antipodes).

(d) A biideal I of a Hopf algebra H is said to be a Hopf ideal if ι(I) ⊂ I. Then

H/I inherits the Hopf algebra structure if and only if I is a Hopf ideal. Hopf

ideals are the kernels of homomorphism of Hopf algebras. An example of this is

the augmentation ideal IH of a Hopf algebra H; this is the kernel of its counit

e : H → k.

We have the following equivalence of categories [Mil17, Corollary 3.7]

Proposition 2.2.4. The functor G  O(G) gives an anti-equivalence between the

category of affine groups over k and the category of commutative finitely generated

Hopf k-algebras. The quasi-inverse is of course given by Spec.

Let (C,∇, e) be a coalgebra over k, then by taking duals with respect to k, one

gets (C∨,∇∨, e∨) an algebra, not necessarily commutative, over k. More precisely,

the product of the algebra is given by the composition

C∨ ⊗ C∨ → (C ⊗ C)∨
∇∨−−→ C∨

rather than just ∇∨. Nevertheless, recall that the arrow C∨ ⊗ C∨ → (C ⊗ C)∨ is

natural.

17Note that there are two morphism over the top arrow.
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For the dual statement to hold, i.e. dualizing an algebra (A,∆, u) to get a coalgebra,

we require the natural map A∨ ⊗ A∨ → (A⊗ A)∨ to be an isomorphism. This is the

case if k is a field and A is finite dimensional. Assuming this, by using

A∨
∆∨−−→ (A⊗ A)∨ ↔ A∨ ⊗ A∨

as coproduct, the triple (A∨,∆∨, u∨) becomes a coalgebra over k.

In this way, if (B,∆, u,∇, e) is a bialgebra over k, its dual (B∨,∇∨, e∨,∆∨, u∨) is

a bialgebra as well. Algebra and coalgebra structures are interchanged. Furthermore,

observe that the notion of antipode is self-dual, whereby this discussion extends to

Hopf algebras.

In summary, dualizing H  H∨ results in an auto anti-equivalence of the category

of finite Hopf algebras over a field k.

Group-theoretic notions

The anti-equivalence G O(G) is a very fruitful one. For example, let ϕ : G→ G′

be a homomorphism of group-schemes, which is the same as a homomorphism of

Hopf algebras ϕ# : O(G′) → O(G). Then, the kernel of ϕ defined in the previous

section corresponds to the morphism of Hopf algebras O(G)� O(G)/ϕ#(IG′), where

IG′ is the augmentation ideal of O(G′). Moreover, we may now define the quotient

homomorphisms G→ G/ kerϕ. This corresponds by definition to the homomorphism

of Hopf algebras ϕ#
(
O(G′)

)
⊂ O(G).

Remark 2.2.5. Any extension of finite commutative Hopf algebras is faithfully flat (this

is a far from trivial fact). In fact, a homomorphism of group-schemes is faithfully flat

if and only if the corresponding morphism of Hopf algebras is injective. Analogously,

a homomorphism of group-schemes is a closed immersion if and only if it is surjective

at the level of Hopf algebras. As a caveat, if the homomorphism is a closed immersion,

then certainly the kernel is the trivial group. The converse does not hold in general,

however. Nevertheless, it does hold if the base ring k is a field.

Furtheremore, an affine subgroup of an affine group G is by definition an affine

group represented by one of the quotient Hopf algebras of O(G). The latter are in

bijection with the Hopf ideals of O(G).

Coming back to our starting example, the Hopf algebra ϕ#
(
O(G′)

)
defines the
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image of ϕ, say imϕ. In this manner, ϕ factors as

G→ imϕ→ G′

where G→ imϕ is faithfully flat and imϕ→ G′ is a closed immersion.

Let G → G′′ be a faithfully flat homomorphism with kernel G′ → G. Observe

that if G→ Q is a homomorphism such that G′ → G→ Q factors through the trivial

homomorphism ∗ → Q, then it factors uniquely through G→ G′′. Inspired by this,

one calls the homomorphism G → G′′ the quotient of G by G′, sometimes simply

denoted by G/G′.

In general, if G′ → G is a subgroup, we say that G→ G′′ is a quotient of G′ → G if

G′ → G→ G′′ factors through ∗ → G′′ and is initial with this property. Quotients are

then uniquely determined up to unique isomorphism. On the existence of quotients,

say k is a field. Then, among faithfully flat homomorphism G → G′′ such that

G′ → G→ G′′ factors through ∗ → G′′, there is a universal one. However, G′ happens

to be its kernel if and only if G′ is normal. This property may serve as a definition of

normality. Otherwise, a subgroup or more generally a closed immersion G′ → G is

normal if G′(R) is a normal subgroup of G(R) for all k-algebra R. Normal subgroups

are precisely the kernels of faithfully flat homomorphisms.

With this being said, a sequence

∗ → G′ → G→ G′′ → ∗

is called exact, if G→ G′′ is faithfully flat and G′ → G is its kernel. We also refer to

it as a short exact sequence. The sequence is said to split if the quotient morphism

admits a section. Then G is a semi-direct product G′ oG′′.

An affine group-scheme is said to be finite if the underlying scheme is finite over

k. In case k is a field, the order is defined to be o(G) := dimkO(G).

For a short exact sequence, as before, of finite group-schemes,

∗ → G′ → G→ G′′ → ∗

we have additivity for the order function, that is o(G) = o(G′) + o(G′′).

Scheme-theoretic notions

Let G be a finite group-scheme over a field k. Let A be the largest étale k-subalgebra

of O(G). This in fact exists and is a Hopf subalgebra of O(G). We denote by π0(G)
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the group-scheme associated to A. The faithfully flat homomorphism G → π0(G)

corresponding to the inclusion A ⊂ O(G) coincides with the structure map to connected

components of G. The kernel of this homomorphism is G◦, the connected component

containing the identity. Summing up, we have a short exact sequence,

∗ → G◦ → G→ π0(G)→ ∗

This sequence is unique among short exact sequences realizing G as an extension of

an étale group-scheme by a connected group-scheme.

If k is perfect, then this sequence splits. Hence, it realizes G as a semidirect

product G◦ o π0(G). In particular, scheme-theoretically, G is the product over k

of G◦ and π0(G). At the level of k-algebras, we then have that O(G) is the tensor

product of O(G◦) and an étale (finite) k-algebra A.

Furthermore, the scheme-theoretic structure of a connected finite group-scheme

over a perfect field of positive characteristic p > 0 is well understood:

O(G◦) ∼= k[t1, ..., tn]
/(

tp
e1

1 , ..., tp
en

n

)
for some integers e1, ..., en ≥ 1.

Consequently, O(G◦) is a Gorenstein k-algebra. The étale k-algebra A is also Goren-

stein, for it is isomorphic to the product of finitely many separable field extensions of

k. Thus, since O(G) is the tensor product of two Gorenstein finite k-algebras, it is

Gorenstein too.

A well-known theorem by P. Cartier establishes that if k is a field of characteristic

zero, then G is reduced and in fact smooth over k [Mil17, Theorem 3.23], c.f. [DG70,

II,§6.1]. In particular, if G/k is finite, then it is étale.

Examples

Given a finite abstract group G, there are at least two functorial ways to obtain a

finite Hopf k-algebra from it. These are Cartier dual18 to each other though. The

first way gives a commutative Hopf algebra, and so a group-scheme that is called the

constant group-scheme. It is denoted by G by abuse of notation.

Concretely, since G is a set and k is a commutative k-algebra, we have that

the set HomSet(G,k) is naturally a k-algebra. Recall that HomSet(−,k) is a fully

faithful contravariant functor Set→ Algk. However, if G is an abstract group, then

18The Cartier dual of an abelian finite group-scheme G/k is defined to be G∨ := Spec
(
O(G)∨

)
.
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HomSet(G,k) can be endowed with a Hopf algebra structure. Indeed, the coproduct

is given by

∇ : HomSet(G,k)→ HomSet(G×G,k)
∼=←− HomSet(G,k)⊗ HomSet(G,k)

γ 7→
(
(g, h) 7→ γ(gh)

)
It is in the isomorphism HomSet(G × G, k)

∼=←− HomSet(G,k) ⊗ HomSet(G,k) that

we require G to be finite. The identity e : Homset(G,k) → k is the evaluation at

the identity-of-G map. The antipode is defined by the rule ι(γ)(g) := γ(g−1) for all

γ ∈ HomSet(G, k) and g ∈ G.

In summation, we have a fully faithful contravariant functor HomSet(−,k) from

the category of finite groups to the category of Hopf algebras over k. Equivalently,

we have a fully faithful covariant functor from the category of finite groups to the

category of finite group-schemes over k. Moreover, if k is separably closed, then the

essential image of this functor is the full subcategory of étale group-schemes over k.

On the other hand, the dual construction works for any abstract group G, but

in contrast, it gives a cocommutative Hopf algebra rather than a commutative one.

Nonetheless, it is commutative if and only if the group G is abelian. For this

construction, the underlined algebra is k[G], the group k-algebra of G. The group-

product, identity, and antipode are given respectively by the quite simple rules

∇(g) = g ⊗ g, e(g) = 1, ι(g) = g−1, for all g ∈ G.

When G is abelian, we denote the corresponding group-scheme by D(G), so that D

is an additive contravariant fully faithful functor from the category of abelian groups

to the category of (abelian) group-schemes over k. In fact, the affine group of D(G)

is the functor R HomGrp(G,R
×).

Since D is additive, it is enough to understand what it does to Z and Z/nZ to

know what it does to any other abelian group. We have that D(Z) is the so-called

multiplicative group Gm. This corresponds to the affine group R  R×, and is

represented by the Hopf algebra O(Gm) = k
[
ζ, ζ−1

]
. On the other hand, D(Z/nZ) is

the group of n-th roots of unity µn. When it is viewed as an affine group, it is the

functor R {r ∈ R× | rn = 1}. Its Hopf algebra is O(µn) = k[ζ]
/ (

ζn − 1
)
.

By the exactness of D, we see that when it hits the short exact sequence of abelian

groups

0→ Z ·n−→ Z→ Z/nZ→ 0
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it produces the exact sequence of abelian group-schemes

∗ → µn → Gm → Gm → ∗ (2.1)

At the level of Hopf algebras, the faithfully flat homomorphism Gm → Gm is the

inclusion k
[
ζ, ζ−1

]
→ k

[
ζ, ζ−1

]
raising both ζ and ζ−1 to the n-th power. The

augmentation ideal of k
[
ζ, ζ−1

]
is the ideal (ζ − 1), so that the kernel of this map is

realized by the Hopf ideal
(
ζn − 1

)
, i.e. the kernel is k

[
ζ, ζ−1

] / (
ζn − 1

)
= k[ζ]

/(
ζn − 1

)
.

We had that the image D(Ab) is a full subcategory of the category of abelian

group-schemes, and its essential image is called the category of diagonalizable group

schemes. Thus, a group-scheme is said to be diagonalizable if it is isomorphic to D(G)

for some abelian group G. One defines Dn := D(Z⊕n), which is the group of invertible

diagonal matrices.

There is a very precise way to describe the quasi-inverse of D. This is done via

the functor of characters X = Hom(−,Gm). More in detail, if G is a group-scheme, a

character of G is by definition a homomorphism χ : G → Gm. Equivalently, it is a

homomorphism of Hopf algebras O(Gm)→ O(G). This at the same time is equivalent

to give a unit γ of O(G) such that ∇(γ) = γ ⊗ γ. These elements are also called the

group-like elements of the Hopf algebra. From this latter interpretation, it follows

that the set of characters is an abelian group.

The group-scheme Gm has an additive counterpart, namely the additive group

Ga. This is defined as the forgetful functor Algk → Ab sending a k-algebra R to

its underline additive group (R,+). It is represented by the Hopf algebra k[ξ] with

structural maps determined by

∇(ξ) = ξ ⊗ 1 + 1⊗ ξ, e(ξ) = 0, ι(ξ) = −ξ.

If k is a field of characteristic p > 0, one has the e-th iterate of the relative

Frobenius homomorphism on O(Ga). This is the map O(Ga) → O(Ga) given by

ξ 7→ ξq. It is a morphism of Hopf k-algebras as well. It is injective, so faithfully

flat. The augmentation ideal of O(Ga) is (ξ). Thereby, the kernel of F e : Ga → Ga is

given by O(Ga)/(ξq). The kernel thus obtained is the, Cartier self-dual, infinitesimal

group-scheme αq. It fits into a short exact sequence,

∗ → αq → Ga
F e

−→ Ga → ∗ (2.2)
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As a functor, αpe is described as R {r ∈ R | rq = 0}.
Likewise, there is a short exact sequence

∗ → Z/pZ→ Ga
F−id−−−→ Ga → ∗ (2.3)

More classically, we have GLn the functor sending R to GLn(R), the multiplicative

group of nonsingular n× n matrices over R. GLn is an affine group represented by

O(GLn) = k[tij, t]
/ (

det(tij) · t − 1
)
. Relevant for our forthcoming discussion are

the following subgroups of GLn. Let Tn ⊂ GLn be the subgroup of upper triangular

matrices and let Un ⊂ Tn be the subgroup of upper triangular matrices with 1 along

the diagonal. Actually, Un is a normal subgroup of Tn whose quotient is Dn ⊂ GLn,

the subgroup of diagonal matrices. So we have a short exact sequence

∗ → Un → Tn → Dn → ∗ (2.4)

Trigonalizable groups

Let us begin by recalling the concept of coradical of a coalgebra. A coalgebra is said

to be (co)simple if it has no proper subcoalgebras. As a matter of fact, every simple

subcoalgebra of any coalgebra is finite dimensional. The coradical of a coalgebra C is

defined as the sum of all simple subcoalgebras of C and denoted by C0.

The same construction applies to Hopf algebras, under the caveat that the coradical

of a Hopf algebra is not necessarily a Hopf subalgebra. However, we always have

inclusions

k · 1 = k[{1}] ⊂ k[X(H)] ⊂ H0 ⊂ H (2.5)

where X(H) here represents the abelian group of group-like elements of H. Notice

k[X(H)] coincides with the sum of all one-dimensional simple subcoalgebras of H,

as any one-dimensional simple subcoalgebra is of the form k · h for some h ∈ X(H).

Now we can use (2.5) to define unipotent, linearly reductive, and trigonalizable

group-schemes. In concrete, a group-scheme G is said to be unipotent if k · 1 = O(G)0.

On the opposite extreme, G is said to be linearly reductive if O(G)0 = O(G). If

k[X(G)] = O(G)0, then G is called trigonalizable. In all these three cases, we have

that O(G)0 is a Hopf subalgebra.

Notice that a group-scheme G is diagonalizable if and only if k[X(G)] = O(G).

Hence, diagonalizable group-schemes are linearly reductive. Both unipotent and

diagonalizable group-schemes are trigonalizable.
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A group-scheme that is geometrically diagonalizable is said to be of multiplicative

type. That is, G is of multiplicative type if Gksep is diagonalizable. The groups of

multiplicative type are exactly the abelian linearly reductive groups. Furthermore,

Nagata’s theorem explains linearly reductive groups in terms of their connected-étale

decomposition. Namely, Nagata’s theorem establishes that G is linearly reductive if

and only if p - o
(
π0(G)

)
and G◦ is of multiplicative type. Thus, if k is separably closed,

G is linearly reductive if and only if π0(G) is a constant group-scheme whose order is

not divisible by p and G◦ = D(Γ) for some abelian group Γ whose torsion is divisible

by p. There are at least two more ways to characterize groups of multiplicative type:

G is abelian and Hom(G,Ga) = 0⇐⇒ G is of multiplicative type

⇐⇒ G is abelian and O(G)∨ is étale

For unipotent group-schemes, we know the following properties. We have that

subgroups, quotients, and extensions of unipotent group-schemes are unipotent. Unipo-

tency and geometric unipotency are equivalent notions. We have that Un and its

subgroups are unipotent. Conversely, every unipotent group-scheme is isomorphic to

a subgroup of Un. This last fact is crucial for us because Un has a normal series (in

fact central)

Un = U (0)
n ⊃ U (1)

n ⊃ · · · ⊃ U

(
n(n−1)/2

)
n = ∗

whose intermediate quotients are canonically isomorphic to Ga. Hence, given a

unipotent group-scheme, we can realize it as a subgroup of Un, then intersect it with

the above normal series to get a normal series for it whose quotients are all subgroups

of Ga. Roughly speaking, Ga and its subgroups are the building blocks for unipotent

groups, and among the most basic ones are αp and Z/pZ (these are the finite simple

building blocks).

Trigonalizable group-schemes are the type of group-schemes upon which we will

concentrate our attention in Chapter 5. Intuitively, for us, groups of multiplicative

type and unipotent groups are like water and oil, respectively. In this analogy,

trigonalizable groups are a mix of these where oil always floats to the top and water

remains on bottom. This order will be important for us. More precisely, a group G

is trigonalizable if and only if there exists a normal unipotent subgroup such that

its quotient is diagonalizable. In other words, trigonalizable group-schemes are the

extension of a diagonalizable group by a unipotent one. For instance, from (2.4), we
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see that Tn is trigonalizable. In fact, a group-scheme is trigonalizable if and only if it

is isomorphic to a subgroup of Tn.

We have that subgroups and quotients of trigonalizable groups are trigonalizable.

However, trigonalizable group-schemes are not closed under extensions. Crucially for

us, trigonalizable groups are closed under small limits. In particular, if G1 → G0 and

G2 → G0 are homomorphisms of trigonalizable groups, then G1×G0G2 is trigonalizable.

If G is geometrically trigonalizable, we have that it contains a unique normal

unipotent subgroup Gu whose quotient is of multiplicative type. So a group-scheme is

geometrically trigonalizable if and only if it is an extension of a group of multiplicative

type by a unipotent group. The subgroup Gu is also characterized by being the largest

unipotent subgroup of G, i.e. it is characterized by containing any other unipotent

subgroup of G. The formation of Gu commutes with base extensions. Actually, if

G ⊂ Tn, then Gu coincides with G ∩ Un.

In conclusion, a trigonalizable group G comes equipped with a canonical exact

sequence

∗ → Gu → G→ G/Gu → ∗

This sequence splits if either k is algebraically closed, or if k is perfect and Gu is

connected. Notice that all abelian groups are trigonalizable. In this case, one may

swap the role of Gu and G/Gu in the above exact sequence.

Observe that all trigonalizable groups are solvable. An example when the converse

is not true is the following. Say the characteristic of k is 2 and let G be the subgroup

of SL2 of 2× 2 matrices (aij) such that a2
ii = 1 and a2

12 = 0 = a2
21. Then G fits into

the following short exact sequence

∗ → µ2 → G→ α2 ×α2 → ∗

where the closed immersion is given by ζ 7→
(
ζ 0
0 ζ

)
, whereas the faithfully flat

quotient is given by (
a11 a12

a21 a22

)
7→ (a11a12 , a21a22)
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2.2.2 Actions, quotients, and torsors

Let Y be a finite type B-scheme. A (right) action of an affine group-scheme G/k on

Y/B is a B-morphism α : Y ×G→ Y such that:

Y ×G×G id×∇ //

α×id
��

Y ×G
α

��
Y ×G α // Y

Y × ∗ id×e //

∼=
��

Y ×G

α
ww

Y

are commutative diagrams.

A B-morphism f : Y → X is G-invariant if the action α : Y ×G→ Y is also an

X-morphism, meaning that the following diagram commutes

Y ×G α //

p

��

Y

f

��
Y

f // X

Let C be a full subcategory of B-schemes, then a quotient in C of the action

α : Y × G → Y is a G-invariant morphism q : Y → X in C factoring uniquely any

other G-invariant morphism in C. If it exists, it is unique up to unique isomorphism.

A G-torsor is a faithfully flat (and locally of finite-type) morphism q : Y → X

together with an action α : Y × G → Y such that q is G-invariant and moreover,

the induced morphism α× p : Y ×G→ Y ×X Y is an isomorphism. In other words,

a G-torsor is a G-bundle in the fppf-topology. Since G/k is affine, we have that

isomorphism classes of G-torsors over X are functorially classified by the pointed-

set Ȟ1(Xft, G); see [Mil80, Chapter III, §4], [Gir71]. The distinguished point in

Ȟ1(Xft, G) is given by the class of the trivial G-torsor X ×G→ X. If φ : G→ H is a

homomorphism of group-schemes over k, then one defines the map of pointed-sets

Ȟ1(φ) : Ȟ1(Xft, G)→ Ȟ1(Xft, H) as follows. If Y → X is a torsor, then Ȟ1(φ)(Y →
X) is by definition contracted product Y ∧G HX . Roughly speaking, Y ∧G HX is the

quotient of Y ×H by the diagonal right action of G, say (y, h) · g 7→
(
y · g, φ(g)−1h

)
, so

Y ∧G H :=Y ×H
/

(yg, h) ∼
(
y, φ(g)h

)
The right action of H on Y ∧G H is given by the rule (y, h1) · h2 =

(
y, h2h1

)
. One

verifies that Y ∧G H → X, say (y, h) 7→ f(y), is an H-torsor under that action.
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In case G is abelian, Ȟ1(Xft, G) coincides with the derived-functor cohomology

abelian group H1(Xft, G). Moreover, given a short exact sequence

∗ → G→ G→ G′′ → ∗

we have an exact sequence of pointed sets

∗ → G′(X)→ G(X)→ G′′(X)
δ0

−→ Ȟ1
(
Xft, G

′)→ Ȟ1
(
Xft, G

)
→ Ȟ1

(
Xft, G

′′)
that can be continued using second nonabelian cohomology [Gir71, Deb77]

· · · → Ȟ1(Xft, G
′′)

δ1

−→ Ȟ2
(
Xft, G

′)→ Ȟ2
(
Xft, G

)
→ Ȟ2

(
Xft, G

′′)
Nevertheless, in the abelian case, these coincide with the long exact sequence from

derived-functor abelian cohomology with respect to the fppf site.

Remark 2.2.6 (On the Galois correspondence for torsors). Let G→ G′′ be a faithfully

flat homomorphisms of finite group-schemes over k, and let G′ → G be the corre-

sponding kernel. Let Y → X be a G-torsor, then one has that the restricted action

Y ×G′ → Y realizes the morphisms Y → Y ∧G G′′, say y 7→ (y, e), as a G′-torsor.

Next, we would like to restate the axioms for actions in a way that will be useful for

us later on. Notice we can base change all (G,∇, e, ι) by Y/k to get (GY ,∇Y , eY , ιY )

a group-scheme over Y . Thus, the two axioms for right actions translate into the

commutativity of

GY ×Y GY
∇Y //

α×id
��

GY

α

��
GY

α // Y

and to say eY is a section of α. In the ring-theoretic setting of Hopf algebras, if

Y = SpecS, then an action of G on Y is nothing but a coaction of O(G) on S, namely

a homomorphism α# : S → S ⊗ O(G) satisfying the following two commutative

diagrams:

S ⊗O(G)
id⊗∇ // S ⊗O(G)⊗O(G)

S
α#

//

α#

OO

S ⊗O(G)

α#⊗id

OO
S ⊗k S ⊗O(G)

id⊗eoo

S

∼=

OO

α#

77

The ring of coinvariants SG is defined by {s ∈ S | α#(s) = s⊗ 1}.
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As before, by base changing the Hopf algebra O(G) by S/k, we get the Hopf

S-algebra O(GS) associated to the group-scheme GS = S × G over S. Explicitly,

the coproduct ∇S is given by composition of id ⊗ ∇ with S ⊗ O(G) ⊗ O(G)
∼=−→(

S ⊗O(G)
)
⊗S
(
S ⊗O(G)

)
, whereas the identity eS : O(GS)→ S is given by id⊗ e.

Thus, the coaction axioms can be written in a more compact and convenient fashion

as:

O(GS)
∇S // O(GS)⊗S O(GS)

S
α#

//

α#

OO

O(GS)

α#⊗id

OO
S O(GS)

eSoo

S

id

OO

α#

99

It is important to notice that the second axiom implies that α# is injective.

Here are some key facts we will make use of throughout: If C is the category of

affine B-schemes, then quotients exist and are given (locally of affine charts) by the

spectra of the rings of coinvariants SG ⊂ S. If additionally G is finite, then quotients

are finite and onto. In fact, SG ⊂ S is an integral extension; see [Mon93, Theorem

4.2.1] and the references there, and also see [Mum08, Chapter III, §12, Theorem 1].

Finally, notice torsors are always quotients of their respective actions, even in the

category of all B-schemes. This follows from the fact that faithfully flat morphisms of

finite type are strict epimorphisms, [Mil80, Chapter I, §2, Theorem 2.17].

Remark 2.2.7 (On actions and coactions). We mentioned above that an action of G

on SpecS is the same as a coaction of O(G) on S. This is also equivalent to an action

of O(G)∨ on S. For definitions and further details, see [Mon93, Chapter 4]. Roughly,

an action of a Hopf algebra H on S is a k-linear map β : H ⊗ S → S (i.e. a left

H-module structure on S) satisfying a pair of axioms dual to the ones we had for

coactions. Namely, the diagram

H ⊗ S
β

++H ⊗ S ⊗ S

id⊗∆S

22

∇⊗id ))

S

H ⊗H ⊗ S ⊗ S id⊗τ⊗id // H ⊗ S ⊗H ⊗ S β⊗β // S ⊗ S
∆S

99

commutes; where ∆S is the diagonal homomorphism of S. The second axiom is

requiring that h · 1 = e(h) · 1 = e(h) for all h ∈ H. The ring of invariants is defined

by {s ∈ S | h · s = e(h)s for all h ∈ H}.
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If H is finite dimensional, an action (resp. coaction) of H is the same as a coaction

(resp. action) of H∨, in such a way that rings of invariants and coinvariants are the

same in either perspective. Indeed, if H coacts on S by α# : S → S ⊗ H, then H∨

coacts on S via the composition

H∨ ⊗ S id⊗α // H∨ ⊗ S ⊗H id⊗τ // H∨ ⊗H ⊗ S 〈−,−〉⊗id // S

More explicitly, if η ∈ H∨ and s ∈ S, then η · s = (id ⊗ η)
(
α#(s)

)
for all η ∈ H∨,

s ∈ S.

From this, it is clear that the coinvariant elements are invariant. For, if α#(s) =

s ⊗ 1, then η · s = η(1)s for all η. The converse, however, is a bit more subtle,

as it relies on H being finite dimensional. Indeed, to check that two elements (e.g.

α#(s) and s⊗ 1) in the finite rank free S-module S ⊗H are the same, it suffices to

show their images under id⊗ η are the same for all η ∈ H∨, for these maps generate

the S-dual module of S ⊗ H. The upshot is that invariants are coinvariants due to

indirect reasons. Thus, it is in principle easier to show an element is an invariant

than a coinvariant, although these are a posteriori equivalent.

Furthermore, given an action H∨⊗S → S, its associated coaction is only defined

after choosing a k-basis for H. Indeed, if h1, ..., hd form a basis with corresponding

dual basis η1, ..., ηd, then the coaction is given by the rule s 7→ (η1 · s) ⊗ h1 + · · · +
(ηd · s)⊗ hd.

2.3 Finite torsors over singularities

Let (R,m,k, K) be a strictly local19 k-rational normal20 domain of dimension at least 2

over an algebraically closed field k. For short, we refer to any such a (R,m,k,l, K) as

a k-rational germ. Let X = SpecR and fix Z ⊂ X a closed subscheme of codimension

at least 2, with open complement U ⊂ X and defining ideal I. In this dissertation, we

are interested in understanding to what extent there are finite group-schemes G over

k such that the restriction map of G-torsors

%1
X(G) : Ȟ1(Xft, G)→ Ȟ1(Uft, G)

is not surjective. The goal of this section is to describe how our problem can be

reduced to a ring-theoretic setting. Namely, we want to explain why if %1
X(G) is not

19That is, strictly Henselian, which means Henselian with k separably closed.
20However, for the present discussion, we only required R to be an S2 local domain.
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surjective, then there exists a local finite extension (R,m,k, K) ⊂ (S, n,k) with S a

S2 local ring, and a faithfully flat homomorphism G� G′ with (G′)◦ = G◦, such that:

G′ acts on S in such a way that R = SG
′
, and SpecS → X induces a G′-torsor over

U , but not everywhere. That is, the pullback of SpecS → X to U does not belong to

the image of %1
X(G′).

This is basically done by taking integral closures. To this end, we begin with

the following simple observations. Let h : V → U be a finite morphism with U ⊂
X = SpecR; by its integral closure we mean the finite morphism h̃ : Y → X where

Y = SpecS and S := H0(OV , V ). Note that taking integral closures is functorial on

finite U -schemes. Also observe that the pullback of h̃ to U recovers h. On the other

hand, if h : V → U does come from restricting a G-torsor Y → X, then it happens to

be the integral closure of h, thus the following lemma is in order.

Lemma 2.3.1 (Extending actions across integral closure). Let h : V → U be a G-

torsor with action α : V × G → V . Then α extends across the integral closure to a

unique action α̃ : Y ×G→ X such that h̃ : Y → X is its quotient morphism. Moreover,

H0(Y,OY ) is an S2 semi-local ring. We say that h extends across the integral closure

if h̃ is a torsor.

Proof. We need the coaction of α on global sections to give α̃. For this, notice

R = H0(U,OU), when R is an S2 ring of dimension at least 2. Note S = H0(V,OV )

is S2 as well. Indeed, since h : V → U is a faithfully-flat finite morphism, h∗OV is

an S2 OU -module. Then, ι∗h∗OV is an S2 OX-module by [Har94, Theorem 1.12], but

H0(X, ι∗h∗OV ) = S by definition. Since S is an S2 R-module, it is an S2 ring, for

restriction of scalars under finite maps does not change depth.

Thus, S ⊗ O(G) is also S2, for it is a finite free extension of S. Since V × G ⊂
Y ×G is an open subscheme whose complement has codimension at least 2, it follows

H0(V ×G,OV×G) = S ⊗O(G). Thus, the coaction of α on global sections induces a

coaction α#(V ) : S → S ⊗O(G), which gives the desired action. K

Remark 2.3.2. Let R = SG ⊂ S be a G-quotient. As in Corollary 5.1.11, let W be the

open subscheme of SpecR over which Y = SpecS is a torsor and suppose W contains

no codimension-1 points. Since we have that R is S2, it follows R = H0(W,OW ).

However, we do not necessarily have that H0(YW ,OYW ) is S unless, for example, S

was S2 to start with.
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The previous lemma makes precise that our problem reduces to study the question

to what extent G-torsors h : V → U extend across the integral closure. However,

H0(Y,OY ) might not be local. Nonetheless, in the following lemma, we show that we

may restrict our attention to V connected and so to S local as R is Henselian.

Lemma 2.3.3. Let h : V → U be a finite G-torsor as before, it is dominated by a finite

G′-torsor h′ : V ′ → U where V ′ is connected. More precisely, there is an equivariant

finite morphism V ′ → V factoring h′ through h.21 Moreover, (G′)◦ ∼= G◦.

Proof. Consider the connected-étale canonical decomposition G = G◦oπ0(G). Then

we have that the image of h : V → U under Ȟ1(Uft, G) → Ȟ1
(
Uft, π0(G)

)
gives

a π0(G)-torsor W → U , and a G◦-torsor V → W factoring h : V → W → U ;

see Remark 2.2.6. Since W → U is étale, it is dominated by any of its connected

components; let W ′ ⊂ W be one of them. By further domination, we may take

W ′ → U to be generically Galois. We choose V ×W W ′ to be our V ′.

Now, by [Nor82, Chapter II, Lemma 1] and [EV10, Proposition 2.2], we have that

V ′ is a G×π0(G) Gal(W ′/U) =: G′ torsor over U , for X is integral and is endowed with

a k-rational point.22 Notice that the connected component at the identity remains

unchanged, for scheme-theoretically G = G◦×π0(G). It only remains to explain why

V ′ is connected. For this, notice V ′ → W ′ is a G◦-torsor and consider the following

claim.

Claim 2.3.4. Torsors over connected schemes for connected group-schemes are con-

nected.

Proof of claim. Since k = ksep, connectedness is the same as geometric connected-

ness. Set X2 → X1 a finite G0-torsor with both X1 and G0 connected. Since G0 is

geometrically connected, the number of connected components of X2×G0 is the same

as the number of connected components of X2; see for example [Sta18, Tag 0385].

On the other hand, the number of connected components of X2 ×X1 X2 should be at

least the square of the number of connected components of X2, for X1 is connected.

Then X2 has only one connected component. This proves the claim. K

21However, we do not mean V ′ → V is surjective nor dominant.
22In [Nor82] M. Nori proved that if Vi are finite Gi-torsors over U , i = 0, 1, 2, and fi : Vi → V0,

i = 1, 2, are equivariant maps, then V1 ×V0 V2 is a G1 ×G0 G2-torsor over U provided that U is
integral and U(k) 6= ∅. In our case, U is integral but U(k) = ∅. This is remedied in [EV92] by
using that U ⊂ X, and X(k) 6= ∅.
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This proves the lemma. K

Observe that in Lemma 2.3.3, if h′ : V ′ → U extends across integral closure, so

does h : V → U ; see [EV10, Proposition 2.3] for further details. In summary, we have

proved the following.

Proposition 2.3.5 (Reduction to local algebra). Let h : V → U be a G-torsor that

is not the restriction of a G-torsor Y → X. Then there exists Spec(S, n,k)→ X a

local G′-quotient that is a torsor over U but not everywhere. Moreover, G and G′ have

isomorphic connected components at the identity.

Remark 2.3.6. It is worth mentioning that the residue fields stay the same because k

was assumed algebraically closed; this is deliberately done to ensure that every cover

is endowed with a k-rational point lying over x. We want the existence of these covers

to depend on the geometry of the singularity and not on arithmetic issues coming

from the groundfield.

2.3.1 The local étale fundamental group

When we restrict our attention to étale group-schemes over k, our problem simplifies

considerably. First of all, if G is étale over k, then Ȟ1(Xft, G) is a singleton, i.e. every

G-torsor over X is trivial. Then, our problem amounts to study when Ȟ1(Uft, G) is

trivial. i.e. a singleton. However, we have functorial bijections of pointed sets

Homcont

(
πét

1 (U), G
) /

G

∼=−−−−→ Ȟ1(Uft, G)

where G acts on Homcont

(
πét

1 (U), G
)

by conjugation23; for further details, see [GW10,

Section 11.5], [Mil80, Chapter I, Remark 5.4 and Chapter III, Corollary 4.7, Remark

4.8]. The marked point of the set on the left is the trivial homomorphism of groups.

Here πét
1 (U) is the étale fundamental group of U with base point SpecKsep → U ,

as defined in [Gro63, Exposé V], or well [Mur67]. It is a profinite topological group

characterized by the above natural bijections. More generally, it is the fundamental

group classifying or pro-representing the Galois category of finite étale cover over

U . By our preliminary discussion on integral closures, or simply by Zariski’s Main

Theorem [Mil80, Chapter I, Theorem 1.8], we see that the Galois category of finite

23Thinking now of G as an abstract finite group.
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étale covers over U is equivalent to the Galois category of finite covers over X, which

are étale over U , c.f. [Art77].

As customary for normal schemes, by choosing the base point to be a separable

closure of the fraction field, we may compute or express the étale fundamental group

as the inverse limit lim←−Gal(L/K) over all finite Galois extensions K ⊂ L ⊂ Ksep such

that the integral closure of U inside L is étale [Mil80, Example 5.2 (b)]. Equivalently,

the limit traverses all finite Galois extensions such that the integral closure of R in L

is étale over U .

We will refer to πét
1 (U) as the local étale fundamental group of X. It measures and

classifies isomorphism classes of generically Galois covers over X that are étale over

U . It is worth noting that we do not need k to be perfect nor m to be k-rational to

define and study πét
1 (U).

As a historical aside, it is worth saying that the study of local fundamental groups

has a long history. It has early origins in the study of resolution of singularities

based on the work of S. Abhyankar. It also dates back to the celebrated theorem by

D. Mumford [Mum61] on the equivalence between smoothness and triviality of the

local fundamental group, over the complex numbers. Mumford’s result was generalized

to the algebraic setting by H. Flenner [Fle75], c.f. [CS93, Corollary 5].
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Chapter 3

Transformation rule for the F -signature

In this chapter, we introduce a transformation rule for the F -signature under finite

covers. This transformation rule is largely responsible for the main results of this

dissertation. We dedicate to it an entire chapter due to its central role in this work.

We also consider this transformation rule interesting in its own right. As an example

of this, in Chapter 6, we give separate applications of this transformation rule.

Theorem 3.0.1 (Transformation rule for the F -signature under finite morphisms).

Let (R,m,k, K) ⊂ (S, n,l, L) be a local extension of normal domains with correspond-

ing morphism of schemes f : Y → X. Let ∆ be an effective Q-divisor on X. Suppose

that there is a nonzero morphism of S-modules τ : S → HomR(f∗S,R) = ωS/R such

that T := τ(1) is surjective, T (n) ⊂ m, and ∆∗ := f ∗∆−DT is effective on Y . Then

the following equality holds

[l : k] · s(S,∆∗) = [L : K] · s(R,∆).

Furthermore, if (R,m,k, K) ⊂ (S, n,l) is just a local extension, with R just a domain

and S a reflexive R-module,1 and τ is an isomorphism, then

[l : k] · s(S) = dimK SK · s(R)

where K → SK is the generic fiber of R ⊂ S.

Remark 3.0.2. With the same setup as in Theorem 3.0.1, notice that τ is an isomor-

phism if and only if DT is the zero divisor. In particular, the extension R ⊂ S is

quasi-étale2 if and only the S-linear map S → ωS/R sending 1 ∈ S to the trace map

TrS/R is an isomorphism.

1For example, if R is an S2 domain and S an S2 local ring.
2Meaning étale in codimension 1.

37
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Remark 3.0.3. Observe that with the same setup as in Theorem 3.0.1, if τ is an

isomorphism, then the residual degree [l : k] is nothing but the free rank of the

reflexive R-module S. Indeed,3

frkRf∗S = λR
(

HomR(f∗S,R)
/

HomR(f∗S,m)
)

= λR
(
S · T/n · T

)
= λR(l) = [l : k]

where HomR(f∗S,m) = n · T precisely because T is surjective and T (n) ⊂ m. In fact,

HomR(f∗S,m) ⊂ n · T because T (S) = R,4 and conversely, HomR(f∗S,m) ⊃ n · T
because T (n) ⊂ m.

As an immediate consequence, we obtain the following result.

Corollary 3.0.4 (Perseverance of strong F -regularity). Suppose we are in the same

setting as Theorem 3.0.1. Then the pair (S, f ∗∆) is strongly F -regular if and only if

the pair (R,∆) is strongly F -regular. In particular, if R is strongly F -regular, then S

is a normal domain.

Remark 3.0.5. The “only if” direction in Corollary 3.0.4 was known before for general

split extensions; see for example [SS10, Proposition 6.3]. To the best of the author’s

knowledge, only partial results were known for the converse of [SS10, Proposition 6.3];

see [HiWiY02, Proposition 1.4].

Before proceeding with the proof, we make some general comments on the nature

of the hypothesis that will be used on the proof.

First of all, we recall Grothendieck duality for finite morphisms [Har66, Chapter III,

§6], [Har77, Chapter III, Exercise 6.10]. Let R→ S be a module-finite homomorphism

of rings with f : Y → X the corresponding finite morphism of schemes. One defines

the functor f ! : R-mod → S-mod by the rule f !M := HomR(f∗S,M). Also, one

defines a natural transformation Tr: f∗f
! → id given by TrM : f∗f

!M → M , where

TrM(ρ) := ρ(1) for all ρ ∈ HomR(f∗S,M). Then one has the following fundamental

result.

Theorem 3.0.6 (Grothendieck duality for finite morphisms). Let R→ S be a module-

finite homomorphisms of rings with f : Y → X the corresponding finite morphism of

schemes. Then the morphism of R-modules

ξ = ξ(M,N) : f∗HomS

(
N, f !M

)
→ HomR

(
f∗N,M

)
, ψ 7→ TrM ◦f∗ψ

3Using [BST12, Proposition 3.5, Lemma 3.6].
4Indeed, if T (s · −) : f∗S → R is not surjective, then s cannot be a unit, because otherwise,

T (sS) = T (S) = R.
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is a natural isomorphism on both M ∈ R-mod and N ∈ S-mod. In fact, its inverse

ζ = ζ(M,N) is given by ζ(ϑ)(n) := ϑ(− · n) for all n ∈ N and ϑ ∈ HomR(N,M). In

other words, (
ζ(ϑ)(n)

)
(s) := ϑ(s · n)

for all s ∈ S, n ∈ N , and ϑ ∈ HomR(N,M).

We apply Grothendieck duality for finite morphims in the following way. Let

M = R and N = F e
∗ f

!R = F e
∗ωS/R, then we get an isomorphism of R-modules

f∗HomS

(
F e
∗ωS/R, ωS/R

)
→ HomR

(
f∗F

e
∗ωS/R, R

)
= HomR

(
F e
∗ f∗ωS/R, R

)
ψ 7→ TrR ◦f∗ψ

In particular, for all ϕ ∈ CR
e , there exists a unique ϕ! ∈ HomS

(
F e
∗ωS/R, ωS/R

)
making

the following diagram of R-modules commutative

F e
∗ f∗ωS/R

f∗ϕ!
//

F e
∗ TrR

��

f∗ωS/R

TrR
��

F e
∗R

ϕ // R

Indeed, ϕ! = ζ
(
ϕ ◦ F e

∗ TrR
)
, or more concisely

ϕ!(F e
∗ ρ)(s) =

(
ϕ ◦ F e

∗ TrR
)
(s · F e

∗ ρ) =
(
ϕ ◦ F e

∗ TrR
)(
F e
∗ (s

q · ρ)
)

= ϕ
(
F e
∗ TrR(sq · ρ)

)
= ϕ

(
F e
∗ ρ(sq)

)
for all s ∈ S and ρ ∈ ωS/R = HomR(f∗S,R).

Now, recall that if we have a nonzero section τ : S → ωS/R, say T = τ(1),

then it extends to an isomorphism τ : S(DT ) → ωS/R, τ(l) = T (l · −). In fact,

S(DT ) ⊂ L is the largest S-submodule of L that is mapped into R under TK : L→ K,

where TK = T ⊗R K. In other words, T : f∗S → R can be extended to a map

T : f∗S(DT ) → R. Furthermore, we have the following commutative triangle of

R-modules

f∗S(DT )

T $$

f∗τ // f∗ωS/R

TrR||
R
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expressing that T and TrR are identified under the isomorphism τ : S(DT ) → ωS/R.

Consequently, we get natural isomorphisms of R-modules

ξ′N : f∗HomS

(
F e
∗N,S(DT )

)
→ HomR

(
F e
∗ f∗N,R

)
, ψ 7→ T ◦ f∗ψ (3.1)

Let ϕ ∈ CR
e . Then the composition ϕ ◦ F e

∗T : F e
∗ f∗S → F e

∗R→ R corresponds to

the divisor DT + f ∗Dϕ on Y . Hence, it is the restriction of a (unique) map in

HomR

(
F e
∗ f∗S(DT + f ∗Dϕ), R

)
.

In fact, it is the composition

F e
∗ f∗S(DT + f ∗Dϕ)

F e
∗T−−→ F e

∗R(Dϕ)
ϕ−→ R.

In this way, by applying (3.1) with N = S(DT + f ∗Dϕ), we have that there exists a

unique ψ making the following diagram commutative

F e
∗ f∗S(DT + f ∗Dϕ)

f∗ψ //

F e
∗T

��

f∗S(DT )

T
��

F e
∗R(Dϕ)

ϕ // R

(3.2)

Nonetheless, we can untwist the top morphism to get a commutative square

F e
∗ f∗S(DT + f ∗Dϕ − qDT )

f∗ψ //

F e
∗T

��

f∗S

T

��
F e
∗R(Dϕ)

ϕ // R

Therefore, if the divisor DT + f ∗Dϕ − qDT = f ∗Dϕ − (q − 1)DT is effective, i.e. if

f ∗∆ϕ −DT is effective, we can restrict to S to get a commutative diagram

F e
∗ f∗S

f∗ψ //

F e
∗T

��

f∗S

T
��

F e
∗R

ϕ // R

(3.3)

with Dψ = f ∗Dϕ − (q − 1)DT , equivalently ∆ψ = f ∗∆ϕ −DT . Moreover, ψ is unique

under these conditions.

Following K. Schwede and K. Tucker [ST14, §5], we say that ϕ has a transpose

along T , or that ψ is a transpose of ϕ along T .
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Conversely, say that we have a commutative diagram (3.3). Then there is a relation

DT + f ∗Dϕ = Dψ + (F e)∗DT = Dψ + qDT

in other words,

f ∗Dϕ − (q − 1)DT = Dψ ≥ 0

So, we have that f ∗∆ϕ −DT is effective and equal to ∆ψ. In particular,

ψ ∈ HomS

(
F e
∗S(Dψ), S

)
= HomS

(
F e
∗S(DT + f ∗Dϕ − qDT ), S

)
∼= HomS

(
F e
∗S(DT + f ∗Dϕ), S(DT )

)
in such a way that when ψ is realized as a map in HomS

(
F e
∗S(DT + f ∗Dϕ), S(DT )

)
,

it is the unique map making (3.2) commutative.

Summing up, we have recovered the Transposition criterion [ST14, Theorem 5.7].

Proposition 3.0.7 (Schwede–Tucker Transposition Criterion). Let (R,m,k, K) ⊂
(S, n,l, L) be a local extension of normal domains with corresponding morphism of

schemes f : Y → X. Let τ : S → ωS/R, say τ(1) = T , be a nonzero section. Then

ϕ ∈ CR
e has a transposition along T if and only if ∆∗ϕ := f ∗∆ϕ −DT is effective. In

that case, the transpose is unique, say ϕ̂, and ∆ϕ̂ = ∆∗ϕ.

Furthermore, if ∆ is an effective Q-divisor on X such that ∆∗ := f ∗∆−DT ≥ 0,

then we get in this way a mapping ϕ 7→ ϕ̂ from C∆ to C∆∗ which is a homomorphism

of Cartier R-algebras.

Proof. It only remains to prove that ϕ 7→ ϕ̂ is a homomorphism of Cartier algebras.

The R-bilinearity of this mapping is clear. To see that ϕ̂ · φ̂ = ϕ̂ · φ for ϕ ∈ CR
e and

φ ∈ CR
d , consider the diagram

F e+d
∗ S

F d
∗ ϕ̂ //

F e+d
∗ T

��

ϕ̂·φ̂

��
F d
∗ S

φ̂ //

F e
∗T

��

S

T

��
F e+d
∗ R

F d
∗ ϕ //

ϕ·φ

??F d
∗R

φ // R

Then note that since the inner two squares are commutative, then so is the outer

rectangle. K
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Remark 3.0.8 (Connection with Blickle–Stäbler’s pullback functor). Let f ∗C∆
e be the

(right) S-span of the image of C∆ in C∆∗ under the homomorphic mapping ϕ 7→ ϕ̂.

One can prove that f ∗C∆
e is a Cartier S-algebra that realizes the pullback operation

defined by M. Blickle and A. Stäbler in [BS16]. We will not need this in what follows,

however.

So far, we have only studied the hypothesis that we are given a nonzero section

τ : S → ωS/R. Let us discuss now the significance of the other two hypothesis. For

this, let us consider the isomorphism (3.1) with

N = S
(
DT + d(q − 1)f ∗∆e

)
= S

(
DT + d(q − 1)(∆∗ +DT )e

)
= S

(
d(q − 1)∆∗e+ qDT

)
= S

(
d(q − 1)f ∗∆e+DT

)
together with the projection formula isomorphism

HomS

(
F e
∗S
(
d(q − 1)∆∗e+ qDT

)
, S(DT )

)
∼= HomS

(
F e
∗S
(
d(q − 1)∆∗e

)
, S
)

= C∆∗

e

to get an isomorphism

ξ′ : f∗C
∆∗

e → HomR

(
F e
∗ f∗S

(
d(q − 1)f ∗∆e+DT

)
, R
)
, ψ 7→ T ◦ f∗ψ (3.4)

where we realize

HomR

(
F e
∗ f∗S

(
d(q − 1)f ∗∆e+DT

)
, R
)
⊂ HomR(F e

∗ f∗S,R)

via restriction S ⊂ S
(
d(q − 1)f ∗∆e+DT

)
. In this way, we consider,

HomR

(
F e
∗ f∗S

(
d(q − 1)f ∗∆e+DT

)
, R
)ns

:= HomR

(
F e
∗ f∗S

(
d(q − 1)f ∗∆e+DT

)
, R
)
∩ HomR(f∗S,m).

Now, observe that if T (n) ⊂ m, then

ξ′
(
f∗

(
C∆∗

e

)ns
)
⊂ HomR

(
F e
∗ f∗S

(
d(q − 1)f ∗∆e+DT

)
, R
)ns

.

Conversely, notice that if T is surjective, then ξ′(ψ) = T ◦ ψ is surjective if ψ is also.

In other words,

ξ′
(
f∗

(
C∆∗

e

)ns
)
⊃ HomR

(
F e
∗ f∗S

(
d(q − 1)f ∗∆e+DT

)
, R
)ns

.
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Putting these two observations together, we have the equality

ξ′
(
f∗

(
C∆∗

e

)ns
)

=

(
ξ′
(
f∗C

∆∗

e

))ns

(3.5)

which simply means that ψ ∈ f∗C∆∗
e is surjective if and only if ξ′(ψ) is surjective in

(3.4).5

This in particular applies to ψ = ϕ̂ for ϕ ∈ C∆
e . Hence, ϕ̂ is surjective if and only

if ξ′(ϕ̂) = T ◦ ϕ̂ = ϕ ◦F e
∗T is surjective. However, the surjectivity of this latter map is

equivalent to the surjectivity of ϕ for T is surjective. Hence, ϕ̂ is surjective if and only

if ϕ is surjective. Therefore, we get the “if” direction of the following result analogous

to Corollary 3.0.4.

Scholium 3.0.9 (Perseverance of F -purity). With the same setting as in Theo-

rem 3.0.1, the pair (S,∆∗) is F -split if the pair (R,∆) is F -split. The converse

holds in case (q − 1)∆ is integral for q − 1 sufficiently divisible. Otherwise, let D be a

divisor on Y as in Lemma 3.0.10 below. Then the converse also holds if there exists a

nonzero s ∈ S(−D) not in the splitting prime of (S,∆∗).

Proof. We only need to explain the “only if” direction, for the converse direction

follows from the fact that if ϕ ∈ C∆
e is an F -splitting, then so is its transpose ϕ̂ along

T , as we discussed in the previous paragraph.

In case ∆ = 0, this is well known; see for example [SZ15, Proposition 1.10].

Indeed, if R → S is just a split homomorphism, then if F e
∗S → S is a splitting, we

can compose it with any splitting map T ′ : S → R to get a splitting map F e
∗S → R

that when composed with F e
∗R→ F e

∗S gives a splitting F e
∗R→ R.

In our case, we need to argue why this strategy works in the divisor setting as

well, under either of the two scenarios proposed in the statement of the scholium.

Notice, however, the second one is just a generalization of the first one, for if (q−1)∆

is integral for q−1 sufficiently divisible, then we can take D = 0. Then, the condition

we can find 0 6= s ∈ S(−D) = S not in the splitting prime of (S,∆∗) is just a

restatement of the F -purity of the pair (S,∆∗).

Since T : f∗S → R is surjective, we know there is s′ ∈ S such that T (s′) = 1.

Next, let ψ : F e
∗S
(
d(q − 1)∆∗e

)
→ S be so that ψ(F e

∗ s) = s′, which exists because

5Notice that the surjectivity of ψ and ξ′(ψ) is considered with respect to the common domain F e
∗S.

Nonetheless, the same argument can be used to show the equivalence between the surjectivity of ψ
and ξ′(ψ) with respect to the domains F e

∗S
(
d(q−1)∆∗e

)
and F e

∗S
(
d(q−1)f∗∆+DT e

)
, respectively.
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(S,∆∗) is F -pure and s is not in the splitting prime of (S,∆∗). Then the composition

T ◦ (ψ · s) when restricted to F e
∗R gives a splitting F e

∗R → R. It remains to explain

why it belongs to C∆
e . For this, it suffices to show rs ∈ S

(
d(q − 1)∆∗e + qDT

)
if

r ∈ R
(
d(q − 1)∆e

)
. Indeed, we know that the R-liner map T ◦ ψ : F e

∗ f∗S → R can

be extended to

F e
∗ f∗S

(
DT◦ψ

)
= F e

∗ f∗S
(
Dψ + qDT

)
⊃ F e

∗ f∗S
(
d(q − 1)∆∗ +DT e

)
.

Now, the fact s · R
(
d(q − 1)∆e

)
⊂ S

(
d(q − 1)∆∗e + qDT

)
follows from the following

divisorial estimates

divS rs = f ∗ divR r + divS s ≥ −f ∗d(q − 1)∆e+D ≥ −d(q − 1)f ∗∆e

= −d(q − 1)∆∗e − (q − 1)DT

≥ −d(q − 1)∆∗e − qDT .

This proves the result. K

The following is a technical lemma bounding the error made in commuting pullbacks

and roundups.

Lemma 3.0.10. Let f : Y → X be a finite cover of normal schemes and ∆ a Q-divisor

on X. Then there exists an integral divisor D on Y (depending only on the support of

∆) such that

0 ≤ f ∗
⌈
∆′
⌉
−
⌈
f ∗∆′

⌉
≤ D

for all Q-divisor ∆′ with the same support of ∆. In fact, if f : Y → X is generi-

cally separable, then we may take D to be the ramification divisor, which is further

independent of ∆.

Proof. This is implicitly explained in [ST14, §2.2]. Indeed, the upshot of [ST14, §2.2,

(2.1.2)] is the following: let ∆red =
∑

iDi with Di different prime divisors, then D

may be taken equal to
∑
ejCj where the sum traverses all the primes divisor on Y

whose image under f is one of the Di supporting ∆ and ej is the ramification index

of Cj along f .6 If f : Y → X is separable, then this D is bounded by Ram. K

We are now ready to prove the main result of this chapter.

6That is, ej is the ramification index of the extension of DVR’s OX,f(Cj) ⊂ OY,Ci . More precisely,
ej is the order of a uniformizer for OX,f(Cj) in OY,Cj

.



45

Proof of Theorem 3.0.1. Let δ = dimR +
[
k1/p : k

]
= dimS +

[
l1/p : l

]
. Recall

that we think of C∆
e as the p−e-linear maps F e

∗R → R admitting an extension to

F e
∗R
(
d(q − 1)∆e

)
→ R,7 and similarly for C∆∗

e .

Since we are not assuming L/K is separable, we will need to tweak C∆∗
e a bit to

compute the F -signature of the pair (S,∆∗). We are going to utilize instead De ⊂ C∆∗
e

the p−e-linear maps F e
∗S → S that extend to a map F e

∗S
(
d(q−1)∆∗e+D

)
→ S, where

D is a fixed effective divisor as in Lemma 3.0.10. This modification is asymptotically

insignificant and so it does not affect the F -signature; see [BST12, Lemma 4.17],

[CST16, Lemma 2.7]. Indeed, if c is any nonzero element of S(−D), we have

C∆∗

e · c ⊂De ⊂ C∆∗

e

for all e > 0.

Then, from our preliminary discussion, we have that

[l : k] · ae(S,D) = [l : k] · λS
(
De

/
Dns
e

)
= λR

(
f∗De

/
f∗D

ns
e

)
= λR

(
f∗De

/
f∗D

ns
e

)
= λR

(
ξ′
(
f∗De

) /
ξ′
(
f∗D

ns
e

))
= λR

(
ξ′
(
f∗De

) / (
ξ′(f∗De)

)ns
) (3.6)

where ξ′ is as in (3.4) and

ξ′(f∗De) = HomR

(
F e
∗ f∗S

(
d(q − 1)f ∗∆e+DT +D

)
, R
)

the last step in (3.6) is just (3.5).

Let Ee ⊂ HomR(F e
∗S,R) be the submodule consisting of maps ϑ : F e

∗S → R such

that for all s ∈ S, the map F e
∗ r 7→ ϑ(F e

∗ rs) belongs to C∆
e . Then we claim

Claim 3.0.11. There exists 0 6= c ∈ R such that

Ee · c ⊂ ξ′
(
f∗De

)
⊂Ee

for all e > 0.

Proof. For the second containment, we must show that rs ∈ S
(
d(q−1)f ∗∆e+DT+D

)
for all s ∈ S and r ∈ R

(
d(q − 1)∆e

)
. Equivalently, we have to prove the inclusion

7Equivalently, maps ϕ : F e
∗R→ R such that Dϕ ≥ (q − 1)∆.
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R
(
d(q − 1)∆e

)
⊂ S

(
d(q − 1)f ∗∆e+DT +D

)
. However, this is clear for

divS(r) = f ∗ divR(r) ≥ −f ∗d(q − 1)∆e
(?)

≥ −d(q − 1)f ∗∆e −D

≥ −d(q − 1)f ∗∆e −DT −D.

It is precisely because of (?) that we needed to tweak by D.8 Hence, ϑ ∈Ee.
It remains to construct c making the first inclusion possible. For this, choose a

free submodule G = R⊕[L:K] ⊂ S and 0 6= c0 ∈ R such that c0S ⊂ G. It follows that

c0S
(
f ∗d(q − 1)∆e

)
=
(
c0S ⊗R R

(
d(q − 1)∆e

))∨∨
⊂
(
G⊗R R

(
d(q − 1)∆e

))∨∨
=
(
R
(
d(q − 1)∆e

))⊕[L:K]

where (−)∨∨ denotes reflexification as an R-module (or equivalently, since it can be

viewed as S2-ification, as an S-module where appropriate). Note that the equalities

and containments can be checked in codimension 1 where they are obvious. This

implies that if ϑ ∈Ee, then ϑ · c0 : F e
∗S → R can be extended to a map F e

∗S
(
f ∗d(q −

1)∆e
)
→ R.

Next, let 0 6= c1, c2 ∈ R such that divS c1 ≥ DT and divS c2 ≥ D. Hence,

c1c2S
(
d(q − 1)f ∗∆e+DT +D

)
⊂ S

(
f ∗d(q − 1)∆e

)
for if s ∈ S

(
d(q − 1)f ∗∆e+DT +D

)
, then

divS(c1c2s) ≥ DT +D − d(q − 1)f ∗∆e −DT −D ≥ −f ∗d(q − 1)∆e.

Thus, ϑ·(c0c1c2) can be further extended to a map F e
∗ f∗S

(
d(q−1)f ∗∆e+DT+D

)
→ R.

In other words, letting c := c0c1c2, we have that ϑ · c ∈ ξ′
(
f∗De

)
, as required. K

Therefore, by combining (3.6) and Claim 3.0.11, we have that it suffices to prove

that the limit of
λR
(
Ee
/
Ens
e

)
qδ

as e goes to infinity is [L : K] · s(R,∆). This presumes a generalization of [Tuc12,

Theorem 4.11].

8Although, if L/K is separable and T = TR/S , we might take D = Ram = DTS/R
to control the

error made in commuting pullbacks and roundups. Then the tweak would be unnecessary.



47

For this, Let g := [L : K] and consider a short exact sequence

0→ R⊕g → S → O → 0

where O is a torsion R-module, i.e. AnnRO 6= 0. Applying the exact functor F e
∗

followed by the left exact functor HomR(−, R), we get an exact sequence

0→ HomR(F e
∗S,R)

ι−→ HomR

(
F e
∗R
⊕g, R

)
since HomR(F e

∗O,R) = 0 (for R is a domain and O, therefore F e
∗O, is torsion).

To avoid cumbersome notation in what follows, let us think of the injective map

R⊕g → S as an actual inclusion R⊕g ⊂ S, so that ι is nothing but the restriction

map. Thus, all we are pointing out is that this restriction map is injective, i.e. a map

ϑ : F e
∗S → R gets determined by its values at F e

∗R
⊕g ⊂ F e

∗S. As before, by abuse of

notation and for the sake of clarity, we think of ι as an actual inclusion as well. That

is, we realize HomR(F e
∗S,R) inside HomR

(
F e
∗R
⊕g, R

)
as the maps ϑ : F e

∗R
⊕g → R

admitting a (necessarily unique) extension to a map F e
∗S → R.

On the other hand, for any nonzero c ∈ AnnRO, we have c · S ⊂ R⊕g. Therefore,

following the aforementioned conventions, we obtain inclusions

HomR

(
F e
∗R
⊕g, R

)
· c ⊂ HomR(F e

∗S,R) ⊂ HomR

(
F e
∗R
⊕g, R

)
(3.7)

for all e > 0, as any map ϑ : F e
∗R
⊕g → R when pre-multiplied (i.e. scaled on the

right) by c extends to F e
∗S. In other words, ϑ(F e

∗ c · −) can now be also evaluated at

elements of S and not just at elements of R⊕g ⊂ S.

Observe now that HomR

(
F e
∗R
⊕g, R

) ∼= HomR(F e
∗R,R)⊕g ⊃

(
C∆
e

)⊕g
. Moreover,

under this identification, (3.7) restricts to

(
C∆
e

)⊕g
· c ⊂Ee ⊂

(
C∆
e

)⊕g
for all e > 0. On the other hand((

C∆
e

)⊕g)ns

=

((
C∆
e

)ns
)⊕g

.
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Therefore,

lim
e→∞

λR
(
Ee
/
Ens
e

)
qδ

= lim
e→∞

λR

((
C∆
e

)⊕g /((
C∆
e

)ns
)⊕g)

qδ

= lim
e→∞

λR

((
C∆
e

/ (
C∆
e

)ns
)⊕g)

qδ

= lim
e→∞

g · λR
(
C∆
e

/ (
C∆
e

)ns
)

qδ

= g · s(R,∆)

as desired. This proves the transformation rule. K

Example 3.0.12 (Rational double points). In the paper [Art77], M. Artin proved

that in characteristic p ≥ 7, rational double points9 are all quasi-étale quotients of the

smooth germ by the action of a finite subgroup G ⊂ SL2. More precisely, he proved

that in those characteristics, rational double points are equisingular reductions mod

p of the complex rational double points.10 In particular, Theorem 3.0.1 applies with

T = TrS/R, the Reynold’s operator, and ∆ = 0. Thus, for a classic rational point,

we have that the F -signature is 1/#G. Concretely, s(An) = 1/(n + 1) for n ≥ 1,

s(Dn) = 1/4(n − 2) for n ≥ 4, s(E6) = 1/24, s(E7) = 1/48, and s(E8) = 1/120.

Compare with [HL02, Example 18] and [Hun13, Example 6.11] where the F -signature

of these singularities is computed by substantially different methods.

Example 3.0.13 (Veronese subrings). Let S =
⊕

e∈N Se be an N-graded k-algebra.

Let R = S(d) ⊂ S be its d-th Veronese subring, i.e. R = S(d) =
⊕

e∈N Sde. We see

directly that S = S(d)⊕
⊕

d-e Se. That is, the inclusion R ⊂ S splits as R-modules. Let

T : S → R be the splitting map (so surjective). In fact, ωS/R = HomR(S,R) is freely

generated by T . It is not very hard to see Theorem 3.0.1 works in the graded setting

as well. Otherwise, localize both S and R at their respective redundant homogeneous

maximal ideals, say S+ and R+. Observe that T (S+) ⊂ R+. Hence, Theorem 3.0.1

applies with ∆ = 0 to give s(R) = s(S)/d.

9Say, Gorenstein rational (F -rational) 2-dimensional singularities.
10Using his terminology, except for p = 2, 3, 5, all rational double points are of classical form.
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Remark 3.0.14. Notice that in the previous example, if p divides d, then the extension

is not generically separable, in fact, it ramifies everywhere. In case d is prime-to-p,

the extension is generically separable and TrS/R = d ·T . In fact, dealing with this sort

of phenomena where the extensions ramifies everywhere will be central in Chapter 5.

Throughout our discussion, we have seen how the surjectivity of T , T (n) ⊂ m,

and the effectiveness of ∆∗ are fundamental hypothesis in our proofs. The following

examples demonstrate that we cannot weaken these three conditions on T and ∆.

Example 3.0.15 (Necessity of the three hypothesis in Theorem 3.0.1). In this ex-

ample, we will consider ∆ = 0 throughout.

To see that the surjectivity of T is necessary, we may consider [ST14, Example

7.12]. In this example, we are given with

R =
F2Jx, y, zK

(z2 + xyz + xy2 + x2y
) ⊂ R[u, v](

u2 + xu+ x, v2 + yv + y, z + xv + yu
) ∼= F2Ju, vK

= S

a quasi-étale11 and degree 2 extension of 2-dimensional F2-algebras such that TrS/R

is not surjective. In this example, R is a log terminal singularity that is F -pure but

not strongly F -regular. In fact, R is the ring of invariants of S under the action of

Z/2Z = {0, 1} given by

1 · u = u+
1

1 + u
u2, 1 · v = v +

1

1 + v
v2.

Moreover, one checks that TrS/R(u) = x, TrS/R(v) = y, and TrS/R(uv) = xy + z.

Then TrS/R(S) ⊂ (x, y, z). This example is due to M. Artin [Art75].

For the necessity of T (n) ⊂ m, consider any Noether normalization R ⊂ S of a

singular Gorenstein local ring S, e.g. k
q
x2, y2

y
⊂ k

q
x2, xy, y2

y
, char k > 2. Then

ωS/R ∼= S for S is Gorenstein, say T is a free generator of ωS/R as a S-module. Then

T is surjective, for R ⊂ S must split, and DT = 0. However, Theorem 3.0.1 fails for

otherwise it would imply s(S) = s(R) = 1, but R is singular. In the concrete example

k
q
x2, y2

y
⊂ k

q
x2, xy, y2

y
, we have that a free basis is 1, xy. It is not difficult to see

that the dual element of xy in ωS/R, say T , is a free generator of ωS/R as a S-module.

By definition, it sends xy to 1, so T (n) 6⊂ m.

11That is, étale away from the closed point.
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The same concrete example as above shows that the effectiveness of ∆∗ is neces-

sary, by considering TS/R instead. Indeed, TrS/R = 2xy · T , so that Ram = div xy. In

this case, TrS/R is surjective and sends the maximal ideal into the maximal ideal, but

the transformation rule does not hold.

Example 3.0.16 (A Noether normalization). In the previous example, we considered

the Noether normalization k
q
x2, y2

y
⊂ k

q
x2, xy, y2

y
. We noticed that we cannot ap-

ply Theorem 3.0.1 without divisors for this example. Nonetheless, if ∆ = 1
2

divR x
2y2,

then

f ∗∆ =
1

2
divS x

2y2 =
2

2
divS xy = Ram.

In other words, ∆∗ = 0 using the trace map as our global section of ωS/R. Therefore,

by applying the transformation rule, we get that

s
(
k

q
x2, xy, y2

y)
= 2 · s

(
Jx2, y2

y
,
1

2
div x2y2

)
= 2 · 1

4
=

1

2

which coincided with our previous two computations in Example 3.0.12 and Exam-

ple 3.0.13. The F -signature of the latter pair was computed directly in [BST12,

Example 4.19].

To culminate this chapter, we discuss another aspect of the hypothesis of Theo-

rem 3.0.1 in the generically separable case that will be useful later on. Recall that in

the same setting of Theorem 3.0.1, we have that every ϕ ∈ C∆
e has a unique transpose

ϕ̂ ∈ C∆∗
e along T . That is, we have the following commutative diagram

F e
∗ f∗S

f∗ϕ̂ //

F e
∗T

��

f∗S

T
��

F e
∗R

ϕ // R

(3.8)

Suppose now that (R,∆) is F -split. We claim that there exists ϕ ∈ C∆
e surjective and

m-compatible. Indeed, let ψ ∈ C∆
e surjective (which exists since (R,∆) is F -split).

There exists a smallest j > 0 such that ψ(F e
∗m

j) ⊂ m. If j = 1, we may take ϕ = ψ.

Otherwise, we have ψ
(
F e
∗m

j−1
)

= R by hypothesis. Take x ∈ mj−1 so that ψ(F e
∗x) = 1.

Notice that ϕ = ψ · x has the required properties.

We notice that ϕ̂ is necessarily surjective and n-compatible, c.f. [Spe16, Theorem

3]. Indeed, the surjectivity was discussed right after Scholium 3.0.9. For the n-

compatibility, if ϕ̂(F e
∗n) = S, then

T
(
ϕ̂(F e

∗n)
)

= T (S) = R
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however,

T
(
ϕ̂(F e

∗n)
)

= ϕ
(
F e
∗T (n)

)
⊂ ϕ(F e

∗m) ⊂ m

which is a contradiction. It is worth noticing how both conditions on T are utilized in

the above argument.

In this way, we can mod out the bottom row of (3.8) by the compatible ideal m

and the top row by the compatible ideal n to get the following commutative diagram

at the residue field level

F e
∗l

//

��

l

��
F e
∗k

// k

Nonetheless, this is not quite useful in this generality. Let us assume now that L/K is

separable and T = TrS/R is the trace map. By [ST14, Proposition 5.6], we have that

the diagram (3.8) implies

F e
∗ f∗S

f∗ϕ̂ // f∗S

F e
∗R

ϕ //

OO

R

OO

where the vertical arrows are the inclusion morphisms, which induces, after modding

out by n the top row and by m the bottom row as above, the following commutative

diagram on residue fields

F e
∗l

// l

F e
∗k

//

OO

k

OO

where the top arrow is surjective, hence nonzero. According to [ST14, Proposition

5.2], this implies that l/k is a separable field extension. We summarize our findings

with the following proposition.

Proposition 3.0.17 (Residual separability). Suppose we are in the same setting of

Theorem 3.0.1 with L/K separable and T = TrS/R. If (R,∆) is F -pure, then l/k as

separable and moreover [l : k] divides [L : K].

Proof. It only remains to explain why [l : k] divides [L : K]. By passing to com-

pletions, we may assume that R and S are adically complete with respect to their
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maximal ideals. Therefore, we can choose coefficient fields k ⊂ R and l ⊂ S. More-

over, since l/k is separable, we can choose these coefficient fields in such a way that

k ⊂ l. In this way, the extension R→ S factors as

R→ R⊗k l → S

where R→ R⊗k l is r 7→ r ⊗ 1 and R⊗k l → S is given by r ⊗ l 7→ rl.

Observe that R⊗k l is a finite extension of R with unique maximal ideal m⊗k l.

Furthermore, R⊗kl is normal by [Sta18, Tag 06DF], for l/k is geometrically normal.

On the other hand, R ⊗k l → S is also finite and injective. Indeed, if it had a

kernel, S would be finite over a lower dimensional ring.

Let E be the fraction field of R ⊗k l. Then at the fraction field level, we would

have inclusions K ⊂ E ⊂ L. However, [E : K] = [l : k], for R ⊗k l is free of rank

[l : k] over R. This shows that [l : k] divides [L : K]. K

The following easy observation will be useful and of interest later on.

Proposition 3.0.18. Let (R,m,k) ⊂ (S, n,l) be a finite local extension of rings.

Suppose there is T ∈ ωS/R surjective and such that T (n) ⊂ m. If l/k is trivial, then

T (1) is a unit in R. In particular, in case R and S are normal domains with separable

extension of fraction fields K ⊂ L, if TrS/R is surjective and k = l, then p does not

divide [L : K].

Proof. The condition T (n) ⊂ n just implies that T : S → R induces a quotient k-

linear map T̄ : l → k. Notice that T̄ inherits the surjectivity of T . Therefore, the

extension k ⊂ l being trivial just means that T̄ is an isomorphism. This is equivalent

to T̄ (1) 6= 0, i.e. T (1) 6≡ 0 mod m, so T (1) /∈ m and then T (1) is a unit in R.

For the second part, we just note that the trace map always maps the maximal

ideal into the maximal ideal; see for instance [Spe16, Lemma 9], and TrS/R(1) = [L :

K]. K



Chapter 4

Étale torsors and finiteness of the local
étale fundamental group

In this chapter, we study the existence and measurement of nontrivial étale torsors

over the regular locus of a strongly F -regular singularity. Although we are interested

in studying general finite torsors, the étale case is interesting on its own, for in this

case, we have the advantage of being able to measure the existence of such a torsors

by using the local étale fundamental group, i.e. the étale fundamental group of the

regular locus. In particular, by bounding the size of the local étale fundamental group

in terms of intrinsic invariants of the singularity, we get a precise answer to what

extent there are nontrivial étale torsors over the regular locus of a singularity.

Studying the finiteness of this fundamental group was motivated by the ground-

breaking work by C. Xu on local étale fundamental groups of KLT singularities [Xu14].

In this paper, Xu partially answered a question by J. Kollár [Kol11, Question 26] on

whether if (0 ∈ X) is the germ of a KLT singularity, the (topological) fundamental

group π1

(
X r {0}

)
is finite [Kol11, Question 26]. Xu answered this question by

proving that the profinite completion of π1

(
X r {0}

)
is finite. This is the same as

proving that the étale fundamental group πét
1

(
X r {0}

)
is finite. Later, building on

Xu’s work, D. Greb, S. Kebekus, and T. Peternell in [GKP16, Theorem 1.13] proved

the finiteness of the étale fundamental groups of the regular locus of KLT singularities;

also see [TX17].

Given the strong relation between strongly F -regular singularities in positive

characteristic and complex KLT singularities in characteristic zero, it is natural to

ask whether the analogous result on local étale fundamental groups holds for strongly

F -regular germs. In fact, this question was the genesis of this dissertation. For this, we

have the following effective theorem bounding the order of the local étale fundamental

53
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group.

Theorem 4.0.1 (On the finiteness of the local étale fundamental groups of strongly

F -regular singularities). Let (R,m,k, K; ∆) be a strongly F -regular germ1 of prime

characteristic p > 0 and dimension d ≥ 2. Let Z be a closed subscheme of X = SpecR

of codimension at least 2 with complement U . Then the étale fundamental group of U

is finite with order at most 1/s(R,∆) and prime-to-p.

Equivalently, there is a generically Galois quasi-étale2 cover h? : Y ? = SpecS? →
X such that the open inclusion V ? := (h?)−1(U) → X? induces an isomorphism

πét
1 (V ?)→ πét

1 (Y ?), so that πét
1 (V ?) is trivial for S? is strictly local. In fact, h? is étale

over U and its generic degree is at most 1/s(R) and prime-to-p.

Proof. First of all, notice that since R is a normal domain, we have that U = XrZ is

connected and normal. Also, as customary for normal schemes, we choose the generic

point as our base point of the fundamental group, i.e. our base point is going to be

the field extension K → Ksep, a separable closure of K. Then we have

πét
1 (U) = lim←−Gal(L/K)

where the inverse limit runs over the Galois category of all Galois finite extensions

K ⊂ L ⊂ Ksep such that the integral closure S of R in L is étale over U , in particular

quasi-étale and generically Galois. Additionally, since R is strictly Henselian, we may

consider S to be (strictly) local, a normal germ of dimension d and characteristic p

in fact. In particular, for any such extension

(R,m,k, K; ∆) ⊂ (S, n,l, L; f ∗∆)

we have that S → ωS/R given by 1 7→ TrS/R is an isomorphism of S-modules. Where

f : Y → X is the corresponding morphism of schemes. Moreover, TrS/R would be

forced to be surjective because R ⊂ S splits given that R is a splinter [HH94]. Al-

ternatively, the surjectivity of the trace follows from [ST14, Theorem 7.6, Corollary

7.7]. Additionally, it is a well-known fact that TrS/R(n) ⊂ m; see for example [Spe16,

Lemma 9]. In other words, we are in the same setting of Theorem 3.0.1 and more

specifically of Proposition 3.0.17. Therefore, l/k is separable and further trivial for

k is separably closed (since R is strictly Henselian).

1By a germ, we mean a strictly Henselian local domain (or simply a strictly local domain).
2Meaning étale in codimension 1.
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By applying the Transformation rule for the F -signature, we then get

s(S, f ∗∆) = [L : K] · s(R,∆).

In particular, the F -signature goes up at least by a factor of 2 if the extension R ⊂ S

is not trivial. Therefore, any sequence of module-finite, local, generically Galois, and

quasi-étale, extensions

(R,m,k, K; ∆) ⊂ (S1, n1,k, L1; ∆1) ⊂ (S2, n2,k, L2; ∆2) ⊂ · · ·

with ∆i+1 the pullback of ∆i stabilizes, meaning that Si = Si+1 for i sufficiently

large. Indeed, since we started with a positive F -signature s(R,∆), the sequence of

F -signatures s(Si,∆i+1) would get arbitrarily large as i increases if the above chain

does not stabilize; contradicting the fact that F -signatures are at most 1 by definition.

The above shows that πét
1 (U) is finite. In this case, there will be an extension

(R,m,k, K; ∆) ⊂ (S?, n?,k, L?; ∆?)

representing the Galois category over which we calculate πét
1 (U). That is πét

1 (U) =

Gal(L?/K). Therefore,

#πét
1 (U) = [L? : K] =

s(S?,∆?)

s(R,∆)
≤ 1

s(R,∆)

which proves the claimed upper bound on the order of πét
1 (U).

The statement that the order of πét
1 (U) is prime to the characteristic follows at

once from Proposition 3.0.18. K

The following remarks about Theorem 4.0.1 are in order.

Remark 4.0.2 (Divisorial setup). Notice that the divisor ∆ plays no role in the proof of

Theorem 4.0.1. In particular, the order of πét
1 (U) is bounded by 1/s(R) ≤ 1/s(R,∆)

as well. Our reason for expressing the theorem including divisor is rather ideological.

We are interested in studying pair singularities (R,∆) rather than just singularities,

so it is natural to us to express our results in this setup.

Remark 4.0.3 (Étale unipotent torsors). We would like to point out that the fact the

order of πét
1 (U) is prime-to-p is not a minor detail. Recall that in our proof, we said

this is a direct consequence of Proposition 3.0.18. Let us take a closer look at this;
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if we have that (R,m,k, K) = (S, n,k, L)G ⊂ (S, n,k, L) is a G-torsor over U , then

Proposition 3.0.18 implies that the order of G is prime-to-p. In particular, if G is a

p-group, then any G-torsor over U is necessarily trivial, meaning isomorphic to U×G.

We notice that the p-groups are exactly the étale unipotent group-schemes over k.

In Section 5.2, we will prove that this holds for general unipotent group-schemes over

k.

Remark 4.0.4 (Tame fundamental groups). We notice that the covers in our Galois

category are all tamely ramified. In fact, they are cohomologically tamely ramified

as defined in [KS10, CEPT96]. Precisely, a generically Galois and quasi-étale cover

R ⊂ S is cohomologically tamely ramified if the trace map TrS/R : S → R is surjective.

This is the strongest notion of tameness as proven in [KS10], including the one in

[GM71]. Therefore, the étale fundamental group considered in this chapter coincides

with any of the tame fundamental groups.

Remark 4.0.5 (Effectiveness of the finiteness). Notice that in contrast to Xu’s result

in the complex case, our result is effective in the sense that we show the local étale

fundamental group is finite by bounding above its order by intrinsic invariants of the

singularity.

Our bound on the order of πét
1 (U) by the reciprocal of the F -signature not only

makes our result effective, but it is sharp too. Indeed, next two examples show that

there are singularities in all dimensions for which #πét
1 (U) = 1/s(R).

Example 4.0.6 (Rational double points and sharpness of the upper bound). Let us

resume the Example 3.0.12. As Artin proved in [Art77, Corollary 2.7], if p > 7, we

have that πét
1 (U) = G for a rational double point R, where G ⊂ SL2 is the subgroup

realizing R as a quotient of S = kJx, yK, i.e. R = SG. Therefore,

#πét
1 (U) = #G = 1/s(R)

so that the upper bound is attained in this example.

Furthermore, in this example, S is the singularity S? in Theorem 4.0.1. Addition-

ally, it is worth mentioning that part of what Artin observed in [Art77] was that if

p > 7, then #G is prime-to-p, and so πét
1 (U) = 1/s(R) was tame.

Example 4.0.7 (Veronese subrings of the formal power series ring). Let S = S? =

kJx1, ..., xdK and R the n-th Veronese subring of S, i.e. R = k
q
xa1

1 · · ·x
ad
d

∣∣ a1 + · · ·+
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ad = n
y
. We have that R is the ring of invariants of S under the action of µn given

by xi 7→ xi ⊗ ξ. This extension R ⊂ S is a µn-torsor away from the (singular) closed

point of X = SpecR. Therefore, if n is a power of p, then the extension R ⊂ S is

radicial.3 This implies that the homomorphism πét
1

(
f−1(U)

)
→ πét

1 (U) induced by

the pullback of f : SpecS → X to U is an isomorphism [Mur67, Proposition 7.2.2].

Nevertheless, πét
1

(
f−1(U)

)
is trivial by purity of the branch locus.

On the other hand, if n is prime-to-p, we choose an isomorphism Z/nZ→ µn(k),

which amounts to choose an n-th root of unity ζ ∈ k. In this way, R is the ring of

invariants of S under the Z/nZ-action xi 7→ ζ · xi. So the extension R ⊂ S is Galois

over U with Galois group Z/nZ. Therefore, by purity of the branch locus, we get

that πét
1 (U) ∼= Z/nZ, whose order equals 1/s(R).

The following example shows how Theorem 4.0.1 may fail for F -pure singularities.

Example 4.0.8 (Failure of finiteness for F -pure germs). Let E be an ordinary elliptic

curve over k = kalg. It is well known that an elliptic curve is (globally) F -split if

and only if it is ordinary; see [SZ15, Example 2.6]. For example, the elliptic curve

given by x3 + y3 + z3 = 0 is F -split if and only if p ≡ 1 mod 3, using Fedder’s

criterion [Fed83, Lemma 1.6]; see [ST12, Exercise 2.6]. Then the affine cone over E

is an F -pure singularity. Now, consider the multiplication-by-m isogeny on E, say

[m] : E → E, with m prime-to-p. We have that [m] : E → E is a finite étale cover of

E; see [Sil09] for further details. In fact, it is Galois with Galois group isomorphic

to Z/mZ⊕Z/mZ. These covers induced quasi-étale Galois covers on affine cones, in

fact étale away from the origin. In particular, if U is the affine cone of E with the

origin removed, we get that πét
1 (U) maps onto Z/mZ ⊕ Z/mZ for all m prime-to-p,

whereby it is not finite.

Example 4.0.9 (Failure of finiteness for F -rational germs). It is not expected that

the local étale fundamental groups of F -rational germs are finite, for F -rational sin-

gularities are positive characteristic analogs of rational singularities in characteristic

zero [Smi97]. In dimension 2, if the local étale fundamental group of a rational germ

is finite, then it admits a quasi-étale cover by a germ whose fundamental group is

trivial, and therefore a smooth germ by Mumford-Flenner’s theorem [Mum61, Fle75].

Hence, the rational germ must be a log terminal singularity [Sch08].

3Meaning that f : SpecS → SpecR is universally injective; equivalently f is injective as a map
of topological spaces and all the residue field extensions are purely inseparable.



58 Chapter 4. Étale torsors and finiteness of the local étale fundamental group

As an immediate corollary of Theorem 4.0.1, we obtain the following.

Corollary 4.0.10 (Triviality of the local étale fundamental group for mild singular-

ities). With the same setup as in Theorem 4.0.1, if s(R,∆) > 1/2, then πét
1 (U) is

trivial.

Example 4.0.11 (Some singularities with F -signature more than 1/2). The following

are some examples of singularities R with s(R) > 1/2. By [Sin05], we know that the

F -signatures of the affine cones over P1
k × P1

k, and over P2
k × P2

k are 4/3! = 2/3 and

66/5! = 11/20, respectively.

An important class of strongly F -regular rings are the determinantal rings over k.

For these, we have that the local étale fundamental group is trivial.

Example 4.0.12 (Determinantal rings). Let S = kJxi,jK be the formal power series

ring in m×n variables. Let It be the ideal generated by the t× t minors of the m×n
matrix [xi,j], and let R = S/It, say t ≥ 2. Let x be the closed point of X = SpecR, so

that X r {x} is regular, and in particular (locally) complete intersection. Following

the terminology in [Cut95], we see that the difference between the dimension of R

and its deviation δ(R) is at least 3. Indeed, by denoting by µ(It) the minimal number

of generators of It, we have

dimR− δ(R) = dimR−
(
µ(It)− (dimS − dimR)

)
= dimS − µ(It)

≥ mn− (mn− t2 + 1)

= t2 − 1 ≥ 3

where µ(It) ≤ mn − t2 + 1 by [BV88, Corollary 5.21].4 In other words, dimR ≥
δ(R) + 3 > δ(R) + 2. Therefore, one may use [Cut95, Corollary in page 175] to

conclude that πét
1 (X r Z) is trivial for all closed subschemes Z ⊂ X of codimension

at least 3.

Acknowledgement. The author is greatly thankful to Jenny Kenkel for helping him to

work out the example of determinantal rings.

4Indeed, since It is prime, we have that its arithmetic rank equals µ(It).



Chapter 5

General finite torsors over strongly
F -regular singularities

In this chapter, we study general finite torsors over strongly F -regular germs, focusing

on the non-étale ones. To fix notation:

Setup 5.0.1. Let (R,m,k, K) be a strongly F -regular germ of prime characteristic

p > 0 and dimension d ≥ 2. Let Z be a closed subscheme of X = SpecR of

codimension at least 2 with open complement U . Let I ⊂ R be the ideal of R

corresponding to Z.

In the étale case, our main result was the existence of a generically Galois cover

h? : Y ? = Spec
(
S?, n?,k, L?

)
→ X, étale over U , such that any étale torsor over U? :=

(h?)−1(U) is a torsor over Y ? and therefore trivial, additionally [L? : K] ≤ 1/s(R)

and is prime-to-p.

From now onwards in this chapter, we assume R is defined over k, i.e. we suppose

R is a k-rational germ, in such a way that all finite group-schemes are defined over k.

Additionally, we will suppose k is perfect (i.e. algebraically closed).

The ultimate goal in this chapter is to prove the existence of a “nice” cover Y ? → X

as above such that the restriction map of (isomorphims classes of) G-torsors

%1
Y ?(G) : Ȟ1

(
Y ?

ft , G
)
→ Ȟ1

(
U?

ft, G
)

is surjective for all, or at least for a significant class of finite group-schemes over k,1

that is, so that every G-torsor over U? extends across to a G-torsor over Y ?. As

opposed to the étale case, finite torsors over strictly local rings are no longer trivial.

This is not a minor detail and is why we follow the above perspective.

1We will see that the largest class we are going to be able to handle is the class of finite group-
schemes with either trigonalizable or nilpotent connected component at the identity.
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Let us consider a couple of examples that are both motivating and clarifying.

They support our conviction that non-étale torsors are fundamental in understanding

singularities in positive characteristic.

Example 5.0.2 (Rational double points in low characteristic and the local Nori fun-

damental group-scheme). In [Art77], Artin was interested in the problem of whether

for a surface singularity (in positive characteristic) X, the finiteness of the local étale

fundamental group implies the existence of a cover Â2
k → X. He gave an affirma-

tive answer for rational double points. The way he achieved this was by extending

Lipman’s classification [Lip69] of E8 singularities in all characteristics to all ratio-

nal double points, and explicitly constructing the cover Â2
k → X for every X in his

classification. Of course, the characteristics of interest were p = 2, 3, 5.

More recently, H. Esnault and E. Viehweg [EV10], motivated by the failure of

Mumford-Flenner theorem [Mum61, Fle75] in positive characteristic and the afore-

mentioned work by Artin, introduced what they called the local Nori fundamental

group-scheme. More precisely, to any k-rational germ X, they associated a profi-

nite group-scheme πN
loc(U,X, x), where x represents the k-rational point of X and

U = X r {x}. Roughly speaking, this fundamental group measures the finite torsors

on U that do not come from restricting a torsor over X.2

Esnault and Viehweg’s main result [EV10, Theorem 4.2, Corollary 4.3] was that for

a surface singularity (X, x) over k, the finiteness of πN
loc(U,X, x) implies that (X, x)

is rational. Furthermore, if πN
loc(U,X, x) is trivial, then (X, x) is a rational double

point. Then, they went through Artin’s classification verifying that Artin’s explicit

cover Â2
k → X was a (often non-étale) torsor over U but not over X. This worked

out for every member of Artin’s list except possibly for three of them, namely E1
8 ,

E3
8 in characteristic 2, and E1

8 in characteristic 3. In conclusion, πN
loc(U,X, x) is not

trivial except possibly for the aforementioned examples and the smooth germ. To the

best of the author’s knowledge, it does not follow from their work that πN
loc(U,X, x) is

trivial even for X = Â2
k. However, this is a direct application of A. Marrama’s work

on purity for torsors [Mar16].

Example 5.0.3 (Radicial Veronese subrings of S = kJx1, ..., xdK). Let us revisit

Example 4.0.7. Using the same setting as before, consider the case of n being a power

2Indeed, by the way it is defined, if πN
loc(U,X, x) is trivial, then %1X(G) : Ȟ1

(
Xft, G

)
→ Ȟ1

(
Uft, G

)
is surjective for all finite group-scheme G.
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of p, say q. Then we have had that Âd
k → X was a µq-torsor away from the k-rational

point of X. We will see later that this is the “nice” cover we are looking for.

In what follows, we intend to extend the methods used in Chapter 4 to the

general case. The main result in Chapter 4, namely Theorem 4.0.1, was based on

understanding the growth of the F -signature under quasi-étale local covers. For

this, the transformation rule Theorem 3.0.1 played a primary role. We have seen in

Example 3.0.15 how in order to apply the transformation rule, it is indispensable to

have a map T satisfying three fundamental properties. Seeking for this map and these

properties will lead the rest of this chapter. Indeed, the present chapter is organized

as follows:

◦ Suppose we have R = SG ⊂ S where S is local ring and G a finite group-scheme

acting on S. If G is étale, the trace map TrS/R : S → R is given by the rule

TrS/R(s) =
∑

g∈G(k)

g · s.

In particular, TrS/R is given purely in terms of G and the action of G on S. As

general facts, TrS/R(n) ⊂ n [Spe16, Lemma 9], and TrS/R freely generates ωS/R

if and only if R ⊂ S is Galois, hence étale, in codimension 1. The surjectivity of

TrS/R is then forced by the strong F -regularity of R.

In Section 5.1, we will generalize the afore-described picture to general finite

group-schemes. We will apply the theory of integrals and traces often founded

in the Hopf algebras literature. We will also prove the properties we need for

these traces but could not find a reference for. Fundamentally, we will show that

whether or not the trace is nonsingular characterizes torsorness. Its surjectivity

will be inherited by R once again. However, by looking at examples, we notice

that the property TrS/R(n) ⊂ m does not hold in general, for example, if G is

unipotent.

◦ In Section 5.2, we analyze the case when G is unipotent. We demonstrate

that the map %1
X(G) : Ȟ1

(
Xft, G

)
→ Ȟ1

(
Uft, G

)
is surjective for all unipotent

group-schemes G if X is strongly F -regular (even just a splinter).

◦ In Section 5.3, we study the case G is linearly reductive. In this case, we

observed we can split in two more cases, namely, the case of Veronese-type and
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Kummer-type cyclic covers. In both cases, TrS/R(n) ⊂ m. However, only in the

former case does the F -signature go up. Nevertheless, we argue why this is all

we need.

◦ Finally, in Section 5.4, we put everything together to show the existence of

a maximal cover that works for the class of group-schemes whose connected

component at the identity is either trigonalizable or nilpotent.

5.1 Trace of quotients by finite group-schemes

We commence by showing how to construct the trace map TrS/R : S → R of a quotient

R = SG ⊂ S by the action of a finite group-scheme G/k. After that, we will prove its

relevant properties.

5.1.1 Construction of the trace

Before we start our discussion, we would like to recall the following terminology about

bilinear and linear forms.

Terminology 5.1.1 (Linear and bilinear forms). Let M be a module over a ring R. We

denote its dual HomR(M,R) by M∨. Note a bilinear form on M over R is the same

as an element of (M ⊗RM)∨ =: M∨2. By Hom-⊗ adjointness, there are two natural

isomorphisms υi : M
∨2 → HomR(M,M∨), one per copy of M in M ⊗RM . A bilinear

form Θ is symmetric if υ1(Θ) = υ2(Θ); in that case, we write υ(Θ) for either of these.

A symmetric bilinear form Θ is said to be nondegenerate (resp. nonsingular)3 if υ(Θ)

if injective (resp. an isomorphism).

If M is free of finite rank, we have a determinant function det : M∨2 → R. We

have that Θ is nondegenerate (resp. nonsingular) if and only if det Θ is not a zero

divisor (resp. a unit). In case M is locally free of finite rank, we can associate to Θ

a locally principal ideal det Θ of R, i.e. an effective Cartier divisor on SpecR, for

naturally (M∨2)p ∼= (Mp)
∨2.

Say M =: S is an R-algebra, meaning there is a diagonal morphism ∆S/R : S ⊗R
S → S. By taking its dual ∆∨S/R : S∨ → (S⊗RS)∨, we get a canonical way to obtain a

bilinear form out of a linear form. We refer to θ ∈ S∨ as nondegenerate or nonsingular

3Sometimes referred to as unimodular in the literature.
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if ∆∨S/R(θ) is so. If S is locally free of finite rank, one defines the discriminant of θ to

be disc θ := det ∆∨S/R(θ).

Observe that if the trace map Tr: S → SG exists, then they must exist particularly

for the action of a finite group-scheme G on itself, whose ring of invariants is the base

field k. We discuss these basic cases first, then the trace for any other quotient by G

is constructed from this one and the given action.

Thus, we want first to show the existence of a special k-linear map TrG/k : O(G)→
k, or just TrG for short. It is not hard to see that O(G) is a Gorenstein k-algebra

and therefore, the O(G)-module Homk(O(G),k) is free of rank 1. We wish TrG to be

a special generator of this Hom-set.

To see what this special generator is, note that O(G) coacts on itself via the

coproduct ∇ : O(G)→ O(G)⊗O(G), which means that O(G)∨ acts on O(G), indeed

g · γ = (id⊗ g)
(
∇(γ)

)
for all g ∈ O(G)∨, γ ∈ O(G). We want TrG ∈ O(G)∨ to yield

invariants when it acts on elements via this action. That is, we want TrG ·γ to be an

invariant element for all γ ∈ O(G). Thus, we require g · (TrG ·γ) = g(1)(TrG ·γ), for

all g ∈ O(G)∨, which leads to the desired property of

g · TrG = e∨(g) · TrG

for all g ∈ O(G)∨.

Following Hopf algebras nomenclature, we are requiring TrG to be a left integral

of the Hopf algebra O(G)∨. To the best of the author’s knowledge, this concept

and its main properties were introduced by R. Larson and M. Sweedler in [LS69].

We summarize the definition, existence, and uniqueness of integrals for general Hopf

algebras in the following theorem; for further details and proofs we recommend [Mon93,

Chapter 2].

Theorem 5.1.2. ([Mon93, Definition 2.1.1, Theorem 2.1.3]) Let H be a Hopf algebra.

We say that t ∈ H is a left integral if ht = e(h)t for all h ∈ H. Left integrals form

a k-submodule of H denoted by
∫
H

. If H is finite dimensional over k, then
∫
H

is

unidimensional over k.

Thus, we take TrG to be any k-generator of
∫
O(G)∨

, which is unique up to scaling

by elements of k×. If there is t ∈
∫
O(G)∨

such that t(1) 6= 0, then we always normalize

to have TrG(1) = 1. Maschke’s theorem establishes this is the case exactly when G is

linearly reductive; see [Mon93, Theorems 2.2.1 and 2.4.6].
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Remark 5.1.3. The following two remarks are in order.

(a) In order to be consistent with our forthcoming discussion, we should define TrG

to be the k-linear map γ 7→ t ·γ (for a nonzero choice of t ∈
∫
O(G)∨

) rather than

γ 7→ t(γ). Nonetheless, these two are equivalent, for remarkably, t · γ = t(γ) for

any left integral t, for g
(
t · γ

)
= g
(
t(γ)

)
for all g ∈ O(G)∨. Indeed,

g
(
t · γ

)
= g
(

(id⊗ t)
(
∇(γ)

))
= (g ⊗ t)

(
∇(γ)

)
= (g · t)(γ) =

(
g(1)t

)
(γ)

= g(1)t(γ)

= g
(
t(γ)

)
.

In other words, the following diagram is commutative

O(G) ∇ //

TrG
��

O(G)⊗O(G)

id⊗TrG
��

k
u // O(G)

(b) TrG is nonsingular, see [Mon93, Theorem 2.1.3].

Example 5.1.4 (Concrete examples of integrals). Let G be a finite discrete group.

A left integral t of H := HomSet(G,k) must satisfy γt = γ(1)t for all γ ∈ H, in other

words γ(g)t(g) = γ(1)t(g) for all γ ∈ H, g ∈ G. Therefore,
∫
H

= k ·ε, where ε(g) = 0

for all g 6= 1 and ε(1) = 1. Dually, a left integral t of k[G] is characterized by gt = t

for all g ∈ G. For example, t =
∑

g∈G g is a left integral, by uniqueness
∫
k[G]

= k · t.
Consequently, for the constant group-scheme G, a trace TrG : O(G)→ k is given

by γ 7→
∑

g∈G γ(g). Notice TrG(1) = o(G), so if p 6= o(G), we divide by this to

have TrG(1) = 1. On the other hand, for the diagonalizable group D(G), its trace

TrD(G) : k[G] → k is given by projection onto the direct k-summand generated by

1, so Trk[G](1) = 1. This coincides with the classical Reynold’s operator.

For the unipotent αpe , a left integral t has to satisfy ξi ·t = 0 for all 1 ≤ i ≤ pe−1,

for instance t = ξp
e−1, whereby

∫
αpe

= k · ξpe−1. Hence, a trace for αpe is obtained by

projecting onto the direct k-summand generated by ξp
e−1. In particular, Trαpe

(1) =

0.

Focusing on the affine case now, let S be an algebra and consider an action

α# : S → O(GS) of G on SpecS, set R = SG. Consider the S-linear map

TrGS
:= id⊗ TrG : O(GS)→ S
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where the S-linear structure of O(GS) is the one given by uS : S → O(GS). By

precomposing with α#, one gets a S-linear map TrGS
◦α# : S → S. It is worth

pointing out that this map is nothing but s 7→ TrG ·s, using the induced action of

O(G)∨ on S. The next proposition establishes that this map factors through the

inclusion R ⊂ S. Thus, one defines TrS/R : S → R to be the corresponding factor.

Proposition 5.1.5. The S-linear map TrGS
◦α# : S → S has image in R. One then

defines TrS/R to be the restriction of the codomain.

Proof. Recall this map is the same as s 7→ TrG ·s. It is straightforward to verify

TrG ·s is an invariant under the action of O(G)∨ on S, thereby it must be a coinvariant

element under the coaction of O(G), as discussed in Remark 2.2.7. However, we would

like to present a more direct proof that is inspired by the proof that faithfully flat

extensions of rings are extensions of descent, as in [Mur67, Chapter 7]. Consider the

following diagram:

S α#
// O(GS)

α#⊗id ..

∇S

00

TrGS

��

O(GS)⊗S O(GS)

id⊗TrGS

��
R

⊂ // S
α#

--

uS

11 O(GS)

Now, the bottom sequence is exact by definition. The top sequence, although not

necessarily exact, satisfies α#(S) ⊂ ker(α#⊗ id,∇S), according to first axiom for α#

to be a coaction. Thus, it suffices to prove the following two squares are commutative

O(GS)
α#⊗id //

TrGS

��

O(GS)⊗S O(GS)

id⊗TrGS

��
S

α#
// O(GS)

O(GS)
∇S //

TrGS

��

O(GS)⊗S O(GS)

id⊗TrGS

��
S

uS // O(GS)

The commutativity of the first square is fairly straightforward to check. The com-

mutativity of the second one is more interesting but follows from base changing by S

the commutativity square in Remark 5.1.3. K

5.1.2 Initial properties of the trace

Let us begin by recalling the situation we want to generalize from the field-theoretic

case: let L/k be a finite field extension and G a finite discrete group acting (on
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the left) by k-endomorphisms on L; if K ⊂ L denotes the fixed subfield, then the

extension L/K is Galois with Galois groups G if and only if G acts faithfully on

L. This at the same time is equivalent to TrL/K being nondegenerate and having

[L : K] = o(G). We get the following analog of this principle.

Theorem 5.1.6 (Nonsingularity of TrS/R characterizes torsorness). Let G be a finite

group-scheme over k. A finite G-quotient, say q : SpecS → SpecSG, is a G-torsor if

and only if it is locally free of rank o(G) and TrS/R is nonsingular.

Proof. Let R := SG ⊂ S, consider the fibered coproduct diagram

O(GS) = S ⊗O(G)

S ⊗R S
uS⊗α#

hh

Sp2

oo

α#
kk

S

p1

OOuS

]]

Roo

OO

By definition, R ⊂ S is a G-torsor if and only if it is faithfully flat and ϕ := uS ⊗ α#

is an isomorphism. Notice that, in this case, we have that after a faithfully flat base

change R ⊂ S becomes S ⊂ O(GS), which is a locally free extension of rank o := o(G).

Consequently, R ⊂ S is locally free of rank o too. Then, we can assume throughout

that the extension in question is locally free of rank o. Assuming this, it remains to

prove ϕ is an isomorphism if and only if TrS/R is nonsingular. Notice both questions

are local on R. In view of this, in the paragraph that follows, we explain how to

reduce to the case R is local.

Note that for p ∈ SpecR, the localization of α# at p induces a coaction α#
p : Sp →

Sp ⊗O(G) of O(G) on Sp whose ring of coinvariants is Rp. Moreover, we have ϕp =

uSp ⊗ α
#
p . On the other hand, the formula TrSp/Rp = TrS/R⊗RRp also holds. In this

manner, by localizing at prime ideals of R, we may assume that R is local and so

that S is a semi-local free extension of R.

In order to show ϕ : S ⊗R S → O(GS) is an isomorphism, it suffices to do it when

considered as a S-linear map where the S-linear structures are given by p1 and uS,

respectively. Let s1, ..., so be a basis of S/R and let γ1, ..., γo be a basis of O(G)/k.

Thus, 1⊗ s1, ..., 1⊗ so is a basis for p1 : S → S ⊗R S and similarly 1⊗ γ1, ..., 1⊗ γo is
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a basis for uS : S → O(GS). Set

ϕ(1⊗ si) = (uS ⊗ α#)(1⊗ si) = α(si) =
o∑

m=1

ami ⊗ γm

that is, M := (ami )m,i is the matrix representation of ϕ in these bases. Thus, ϕ is an

isomorphism if and only if M is nonsingular, i.e. detM ∈ S×.

We proceed to describe now the symmetric R-matrix associated to TrS/R as R-

bilinear form in terms of M (a S-matrix). For this, we let T :=
(
TrG(γmγn)

)
m,n

be

the k-matrix representing the k-bilinear form TrG(− · −) in the k-basis γ1, ..., γo.

Notice T is nonsingular (aside of symmetric) by the second part of Remark 5.1.3. We

then have:

Claim 5.1.7. M>TM is the matrix representation of TrS/R(− · −) in the R-basis

s1, ..., so.

Proof of claim. This amounts to the following computation:

TrS/R(si · sj) = TrGS

(
α#(si · sj)

)
= TrGS

(
α#(si) · α#(sj)

)
= TrGS

((
o∑

m=1

ami ⊗ γm

)(
o∑

n=1

anj ⊗ γn

))

= TrGS

( ∑
1≤m,n≤o

ami a
n
j ⊗ γmγn

)
=

∑
1≤m,n≤o

ami a
n
j · TrG(γmγn)

=
∑

1≤m,n≤o

ami Tmna
n
j =

(
M>TM

)
ij
.

K

It is clear now that TrS/R is nonsingular if and only if M is nonsingular. Indeed,

disc TrS/R = detT · (detM)2 = disc TrG ·(detM)2.

This proves the theorem. K

The following should be compared with [Mon93, Theorem 8.3.1] and her reference

to the paper of H. F. Kreimer and M. Takeuchi, [KT81]. Although our proof is an

elementary consequence of our proof of Theorem 5.1.6.
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Scholium 5.1.8. With the same setting as in Theorem 5.1.6 and its proof, suppose R ⊂
S is locally free but ϕ : S ⊗R S → O(GS) only surjective, then TrS/R is nondegenerate.

If additionally S is a domain, then ϕ is an isomorphism and so TrS/R is nonsingular.

Proof. Say d is the rank of the extension R ⊂ S. From the surjectivity, we get

d ≥ o. So, we have that the matrix M defines a surjective S-linear map S⊕d → S⊕o;

therefore, the S-linear transformation M> : S⊕o → S⊕d defined by M> is injective,

for this corresponds to the S-dual of the former. We claim now that the matrix

M>TM defines an injective R-linear operator R⊕o → R⊕o. Indeed, we had already

M> and T are injective, so it remains to see why M is injective, more precisely,

why if M · ~v = 0 for a column vector ~v ∈ R⊕o, then ~v = 0. This is just a different

way to say α# is injective,4 for if ~v = (r1, ..., rd)
> and M · ~v = (t1, ..., to)

>, then

α#(r1s1 + · · · + rdsd) = t1 ⊗ γ1 + · · · + to ⊗ γo. In other words, the determinant of

M>TM is not a zero divisor on R, which means TrS/R is nondegenerate.

For the final statement, if S is further a domain, then the determinant of M>TM

would not be a zero divisor on S, as now being a zero divisor just means being zero.

Therefore, M>TM would also define an injective S-linear operator S⊕o → S⊕o, which

forces M to be injective, i.e. ϕ to be an isomorphism. K

The following corollary shows that the trace TrS/R just constructed satisfies the

third hypothesis required to apply the transformation rule for the F -signature, namely

the existence of an isomorphism τ : S → ωS/R.

Corollary 5.1.9. If R = SG ⊂ S is a G-torsor, then TrS/R freely generates the

S-module HomR(S,R) = ωS/R. Furthermore, if R and S are both S2, this is the case

even if R ⊂ S is a G-torsor only in codimension-1, i.e. if Rp ⊂ Sp is a G-torsor, by

the induced action, for all height-1 prime ideals p of R.

Proof. The first statement is just a rephrasing of what it means for TrS/R to be

nonsingular, i.e. the S-linear map τ : S → HomR(S,R) given by s 7→ TrS/R(s · −) is

an isomorphism.

For the second statement, we just notice S and ωS/R are both S2 R-modules.

Indeed, we have S is S2 as R-module since restriction of scalars under finite maps

does not change depth. For the S2-ness of ωS/R, we recommend the reader see [Sta18,

4Which at the same time followed from the second action axiom: idS = eS ◦ α#.
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Tag 0AUY]. Therefore, to check the aforementioned S-linear map S → ωS/R is an

isomorphism, it suffices to do it in codimension-1 on SpecR, which is be the case

under this extra hypothesis. K

The next corollary is an analog of purity of branch locus for faithfully flat finite

morphisms [AK70, Chapter VI, Theorem 6.8].

Corollary 5.1.10. Suppose Y = SpecS → X = SpecSG is locally free and a G-torsor

in codimension-1, then it is a G-torsor everywhere.

Proof. We have that the sheaf of principal ideals disc TrS/SG on X determines the

locus of points x ∈ X where Y ×X SpecOX,x → SpecOX,x is not a G-torsor under the

induced action. In view of this, if the cover Y → X is not a torsor everywhere, then

it fails to be so in codimension-1. K

This last corollary is analogous to the open nature of étaleness.

Corollary 5.1.11 (Open nature of torsorness). Let q : Y = SpecS → X = SpecSG

be a G-quotient. The locus W of points x ∈ X where qx : Y ×X SpecOX,x → SpecOX,x

is a torsor is Zariski open.

Proof. Let x ∈ W . First of all, by the open nature of flatness, there is a Zariski

open neighborhood W ′ around x such that qx is faithfully flat. Hence, the open

W ′ \ Z
(
disc TrY/X

)
3 x is contained in W . K

5.1.3 Cohomological tameness and total integrals

With the construction of the trace map TrS/R : S → SG in place, we are ready to

formulate the notion of tameness our covers have. This will turn out to be a strong

condition imposed by strong F -regularity, or more generally by splinters. Following

[CEPT96], we pose the following definition

Definition 5.1.12 (Cohomological tameness [CEPT96, KS10]). Let G/k be a finite

group-scheme acting on a k-algebra S with corresponding ring of invariants R ⊂ S.

We say that the extension R ⊂ S is (cohomologically) tame if TrS/R is surjective.

In other words, we see that one of the three key hypotheses in Theorem 3.0.1

is really a tameness condition on the finite extension. In [KS10], several notions of
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tameness conditions are analyzed; however, cohomological tameness is the strongest

one among them.

Remark 5.1.13 (Linearly reductive quotients are always tame). Notice that if S ⊂
SG = R is a G-quotient with G linearly reductive, then it is automatically tame.

Indeed, by Maschke’s theorem, we have that the integral of G satisfies TrG(1) = 1,

then

TrS/R(1) = TrGS

(
α#(1)

)
= TrG(1) = 1

so that TrS/R is a splitting and therefore surjective. In the opposite case, if G is

unipotent, then SG ⊂ S is tame only if it is a trivial torsor [CEPT96, Proposition

6.2].

Remark 5.1.14 (Total integrals). In the Hopf algebras literature, the surjectivity of

the trace TrS/SG : S → SG is referred to as the existence of total integrals for the

right O(G)-comodule algebra S. To the best of the author’s knowledge, the theory

of total integrals was introduced in the work of Y. Doi [Doi85]. However, it was

formulated in a slightly different language. Nonetheless, a complete proof of the

equivalence between the existence of Doi’s total integrals and the surjectivity of the

trace appeared in [CF92]. For further details, see [Mon93, §4.3].

Thus, we can see how splinters and therefore strongly F -regular rings impose

strong conditions on finite quasi-torsors5 over them. Concretely,

Proposition 5.1.15. Let R ⊂ S be a quotient by the action of a finite group-scheme

G/k. Suppose R is a splinter S2 domain and S is S2. If R ⊂ S is a G-torsor in

codimension 1, then R ⊂ S is tame.

Proof. First of all, by Corollary 5.1.9, we have that TrS/R generates ωS/R as an S-

module. On the other hand, since R is a splinter, there must exist a splitting S → R.

Then, an S-multiple of TrS/R sends 1 to 1, therefore TrS/R is surjective. K

5.1.4 The leading question

So far, the trace map TrS/R : S → SG associated to a G-quotient has had all the good

properties the classic trace6 has. Nonetheless, to our surprise, it may happen that

TrS/R(n) 6⊂ m. The following example provides cases of this.

5Meaning torsor in codimension 1.
6Meaning the trace of a generically separable extension.
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Example 5.1.16 (Failure of TrS/R(n) ⊂ m). Consider S = R[t]/
(
tp− r

)
. Let us also

consider in this example the possibility that k may not be algebraically closed. Note

that S is local for all r. However, what its maximal ideal n ↔ y is depends on r.

Indeed, if r ∈ m, then n = m ⊕ R · t ⊕ · · · ⊕ R · tp−1, in particular y is a k-rational

point lying over x. Suppose now r /∈ m; we have two cases depending on whether or

not r has a p-th root residually. If r = up + x for some u ∈ R× and x ∈ m, then

n = mS + (t− u); in this case, y is a k-rational point too. But if r has no p-th roots

even residually, then n = mS. However, it would be impossible if we demand y to be

a k-rational point, for at the residue field level, we would have k ⊂ k
(
r1/p
)
.

Now, (R,m) ⊂ (S, n) is an αp-torsor for all r ∈ R, via the coaction α# : t 7→
t⊗ 1 + 1⊗ ξ. If r ∈ m, then as we had seen above tp−1 ∈ n, but

TrS/R(tp−1) =
(
id⊗ Trαp

)(
α#(tp−1)

)
=
(
id⊗ Trαp

)(
(t⊗ 1 + 1⊗ ξ)p−1

)
=
(
id⊗ Trαp

)( p−1∑
i=0

(
p− 1

i

)
tp−1−i ⊗ ξi

)

=

p−1∑
i=0

(
p− 1

i

)
tp−1−i Trαp(ξi) = 1

see Example 5.1.4. Hence, we cannot expect in general the trace to map the maximal

ideal into the maximal ideal.

The same phenomena TrS/R can also happen even for µp-torsors. Indeed, if r is a

unit, then (R,m) ⊂ (S, n) is a µp-torsor under the coaction t 7→ t⊗ ζ. If r = up + x

as above, then t − u ∈ n but TrS/R(t − u) = u, by a similar computation as the one

above. Amusingly, in case r has no p-th roots even residually, we have TrS/R(n) ⊂ m,

and the transformation rule takes the form p ·s(S) = p ·s(R), so s(S) = s(R). In view

of this, one may ask whether if r = up + x, with x 6= 0, there is any chance that s(S)

is at least s(R). The following example contradicts this. Let p = 3, R = k
q
s, x3

y

and r = 1 + x6, then S = k
q
s, x2, x3

y
, which is not even normal.7

Remark 5.1.17. Notice that in all the examples above Example 5.1.16, we had that

the cover R ⊂ S was a torsor everywhere. It is then natural to ask the following.

Question 5.1.18. Let (R,m,k) ⊂ (S, n,l = k) be a local G-quotient that is a G-torsor

in codimension 1 but not everywhere; is TrS/R(n) contained in m?

7The extra variable “s” is just for R to be bidimensional.
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Investigating this question will dominate the remainder of this chapter. For this,

we will consider separately the unipotent and linearly reductive cases. These would

handle the general abelian case, or more generally, the trigonalizable case.

5.2 The case of unipotent torsors

Our main result in this section establishes that Question 5.1.18 is vacuous if G is

unipotent and the ring of invariants R is strongly F -regular. More generally, we will

show that Question 5.1.18 is vacuous if G is unipotent and the G-quotient R ⊂ S is

cohomologically tamely ramified, a condition guaranteed by the strong F -regularity of

R.

Theorem 5.2.1. With notation as in Setup 5.0.1, every unipotent G-torsor over U

comes from restricting a G-torsor over X. That is, the restriction map of torsors

%1
X(G) : Ȟ1

(
Xft, G

)
→ Ȟ1

(
Uft, G

)
is surjective for all unipotent group-schemes G/k.

We will provide two proofs of this theorem. The first one is an application of the

work in [CEPT96], and hence it is shorter looking. The second proof was our original

approach, and is quite direct. We consider the techniques involved in our proof to be

quite valuable and interesting in their own right, so much so that we recycle them

into the proof of our main result in Section 5.4.

First proof of Theorem 5.2.1. It is established in [CEPT96, Proposition 6.2] that if

R ⊂ S is a tame G-quotient by a unipotent group-scheme G/k, then the extension

must be a torsor (everywhere). Therefore, the result follows from Proposition 2.3.5

and Proposition 5.1.15. K

Remark 5.2.2. Notice that this proof works for X just a splinter.

The second proof will be a little journey, so we will need some preparatory

discussion. First, remember all unipotent group-schemes admit a central normal

series whose quotients are (isomorphic to) subgroups of Ga, thus elementary unipotent

group-schemes following the terminology of [Mil17] are in particular abelian. In view

of this, we will show Theorem 5.2.1 first in the abelian case and the general case is

obtained from this one by induction on the order.
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5.2.1 Elementary case

In case G is abelian, the isomorphism classes of G-torsors over a scheme Y are

naturally classified by H1(Yft, G), the derived-functor of flat cohomology. If further

I = m (i.e. U is the punctured spectrum), we have the short exact sequence from

[Bou78, Corollaire 4.9, Chapitre III],

0→ H1(Xft, G)→ H1(Uft, G)→ Hom
(
G∨,PicR/k(U)

)
→ 0.

Hence, every abelian G-torsor over U = Spec◦R extends across to a G-torsor over

X if and only if the abelian group Hom(G∨,PicR/k(U)) is trivial. We would like to

use this to simplify our forthcoming arguments. However, to the best of the author’s

knowledge, it is unknown whether Boutot’s theory of the local Picard scheme and his

short exact sequence extend to general I of height at least 2. It is worth recalling that

this is very limiting for us, firstly because we are interested in obtaining potential

global results like in [BCRG+17], secondly, the case I = m is most interesting only for

surfaces singularities; we are, however, interested in higher dimensions.

To bypass this issue, we take a closer look at Boutot’s arguments in [Bou78,

Chapitre III] to see what information about the cokernel of ρ1
X(G) : H1(Xft, G) →

H1(Uft, G) we can obtain. Denoting this cokernel by ObX(G), we have

Lemma 5.2.3. Let ∗ → G′ → G → G′′ → ∗ be a short exact sequence of abelian

group-schemes with ObX(G′) = 0 = ObX(G′′). Then ObX(G) = 0.

Proof. Recall ρiX(−) : H i(Xft,−)→ H i(Uft,−) are obtained as the left-derived natu-

ral transformations of Γ(X,−) → Γ(U,−), so compatible with the δ-structures. We

then have the following commutative and horizontally exact diagram:

H0(Xft, G
′′) δ //

��

H1(Xft, G
′) //

��

H1(Xft, G) //

��

H1(Xft, G
′′) δ //

��

H2(Xft, G
′)

��
H0(Uft, G

′′) δ // H1(Uft, G
′) // H1(Uft, G) // H1(Uft, G

′′) δ // H2(Uft, G
′)

Our hypothesis is that second and fourth vertical arrows are surjective. Therefore,

according to the 5-lemma, to get surjectivity of the third one, we need the fifth arrow

to be injective. However, Boutot does show [Bou78, Chapitre III, Corollaire 4.9] that

H2(Xft, G
′) = 0 for all abelian G′. In fact, all cohomologies higher than 2 vanish; see

[Bha12, Proposition 3.1] for a nice, conceptual proof. K
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The following proposition demonstrates Theorem 5.2.1 in the abelian case.

Proposition 5.2.4. If G is an abelian unipotent group-scheme, then ObX(G) = 0.

Proof. In view of Lemma 5.2.3, we may assume G is simple. That is, it suffices to

treat the cases G = Z/pZ and G = αp.

Claim 5.2.5. ObX(Z/pZ) = 0.

Proof of claim. This is a consequence of Artin–Schreier Theory; see [Mil80, Chap-

ter III, Proposition 4.12]. According to this, from the long exact sequence on flat

cohomology derived from (2.3), we get

ObX(Z/pZ) ∼= H1(U,OU)F :=
{
a ∈ H1(U,OU) = H2

I (R) | Fa = a
}
.

This happens to be zero if the ring R is just F -rational and I = m, for stable

elements under the action of Frobenius must be zero; see [Smi97, §2, Theorem 2.6].

For our general I and R strongly F -regular, one proves H1(U,OU)F is zero as follows.

Take a ∈ H1(U,OU)F and let r be a nonzero element in the annihilator of a.8 Let

ϕ ∈ HomR(F e
∗R,R) such that ϕ(F e

∗ r) = 1, i.e. ϕ splits the R-linear composite

R→ F e
∗R

·r−→ F e
∗R.

By applying the local cohomology functor H2
I (−), we get that φ := H2

I (ϕ) splits the

composite

H2
I (R)

F e

−→ H2
I (R)

·r−→ H2
I (R)

therefore a = φ
(
r · F ea

)
= φ(r · a) = φ(0) = 0. This proves the claim. K

Claim 5.2.6. ObX(αp) = 0.

Proof. As before, from the long exact sequence on flat cohomology derived from (2.2),

ObX(αp) ∼= ker
(
H1(U,OU)

F−→ H1(U,OU)
)
.

This kernel is zero by definition for F -injective X and I = m. For general I, one can

use F -purity to show H2
I (R)

F−→ H2
I (R) is injective. Indeed, if ϕ splits R→ F e

∗R, then

H2
I (ϕ) splits H2

I (R)
F−→ H2

I (R), forcing it to be injective. This proves the claim. K

8Recall that every element of Hi
I(R) is annihilated by some power of I.
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Then the proposition holds. K

Remark 5.2.7. Claim 5.2.5 follows for X a splinter from Proposition 3.0.18. This gives

an alternate demonstration.

Acknowledgement. The author would like to thank Christian Liedtke, who, to our

knowledge, first observed the results of Claim 5.2.5 and Claim 5.2.6 and made us

aware of them. These results will be treated in an upcoming preprint by Christian

Liedtke and Gebhard Martin [LM17].

5.2.2 General case

To handle the general case, we proceed by induction on the order of the group-

scheme along with the fact it admits a central elementary (necessarily) unipotent

subgroup whose quotient is (necessarily) unipotent. However, we shall require the

use of nonabelian first and second flat cohomology as treated in [Gir71]. For sake of

notation, we denote this cohomology over a scheme Y by Ȟ i(Yft, G), i = 1, 2. However,

it coincides with the derived-functor flat cohomology if G is a sheaf of abelian groups.

Second proof of Theorem 5.2.1. Let %1
X(G) : Ȟ1(Xft, G) → Ȟ1(Uft, G) denote the re-

striction map (of pointed sets). We prove it is surjective if G is unipotent. Let G′ be

a nontrivial central (so normal and abelian) subgroup of G with corresponding short

exact sequence

∗ → G′ → G→ G′′ → ∗

so that G′′ is unipotent and o(G′′) < o(G). We may also assume o(G′) < o(G),

otherwise we are done by Section 5.2.1. Consider now the commutative digram

H0(Xft, G
′′) // Ȟ1(Xft, G

′) //

��

Ȟ1(Xft, G) //

��

Ȟ1(Xft, G
′′) //

��

Ȟ2(Xft, G
′)

H0(Uft, G
′′) // Ȟ1(Uft, G

′) // Ȟ1(Uft, G) // Ȟ1(Uft, G
′′) // Ȟ2(Uft, G

′)

where the horizontal sequences are exact sequences of pointed sets.

Notice that Ȟ2(Xft, G
′) = H2(Xft, G

′) = 0, as before, for G′ is abelian unipotent.

That is, Ȟ2(Xft, G
′) is a singleton. We have that first and third vertical arrows are

onto by the inductive hypotheses. Unfortunately, we cannot apply the 5-lemma to get

the surjectivity of the middle one as the sets in consideration are no longer groups. Let
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us chase the diagram; this will inspire a strategy to go around it. Let t0 ∈ Ȟ1(Uft, G).

It maps to t1 ∈ Ȟ1(Uft, G
′′), which extends across to t2 ∈ Ȟ1(Xft, G

′′). However, this

lifts to t3 ∈ Ȟ1(Xft, G) as Ȟ2(Xft, G
′) is trivial. Let t4 ∈ Ȟ1(Uft, G) be the restriction

of t3 to U . At this point, we would like to substract t4 from t0 as t4 7→ t1. However,

this does not make sense in this setting. Fortunately, we may make sense of this by

changing the origin via twisted forms as in [Gir71, Chapitre III, §2, 2.6]. Indeed,

we have the conjugate representation G → AutG of G, defined by the action of G

on itself by inner automorphisms. This gives a map of pointed sets Ȟ1(Uft, G) →
Ȟ1(Uft,AutG), where Ȟ1(Uft,AutG) classifies the so-called twisted forms of G; see

[Gir71, Chapitre III, §2, 2.5]. For sake of notation, we write t 7→ tG for such a map

realizing G-torsors as twisted forms of G. We have a bijection:

θt : Ȟ1(Uft, G)→ Ȟ1(Uft,
tG)

where t gets mapped to the trivial class in Ȟ1(Uft,
tG). Moreover, if G happens to

be abelian, this map is nothing but t′ 7→ t′ − t. See [Gir71, Chapitre III, Remarque

2.6.3].

Thus, it is clear that what we need to do is to twist the short exact sequence

∗ → G′ → G→ G′′ → ∗

by the G-torsor t4. Precisely, G acts by inner automorphism on both G′ and G′′, then

t4 can be realized as twisted forms of both G′ and G′′. Since G′ is central, its twisted

form yielded by t4 is the trivial one, namely G itself. On the other hand, the twisted

form of G′′ that t4 gives is t1G′′. Summing up, we have a short exact sequence on U

∗ → G′ → t4G→ t1G′′ → ∗

and a commutative diagram

H1(Uft, G
′) // Ȟ1(Uft, G) //

θt4
��

Ȟ1(Uft, G
′′)

θt1
��

H1(Uft, G
′) // Ȟ1(Uft,

t4G) // Ȟ1(Uft,
t1G′′)

(5.1)

see [Gir71, Chapitre III, §3, Corollaire 3.3.5]. In the same way, one can twist

∗ → G′ → G→ G′′ → ∗



5.3. The case of linearly reductive torsors 77

by t3, obtaining a short exact sequence

∗ → G′ → t3G→ t2G′′ → ∗

on X. Furthermore, we get the commutative diagram,

H1(Xft, G
′) //

��

Ȟ1(Xft,
t3G) //

��

Ȟ1(Xft,
t2G′′)

��
H1(Uft, G

′) // Ȟ1(Uft,
t4G) // Ȟ1(Uft,

t1G′′)

Now, we can take θt4(t0) in Ȟ1(Uft,
t4G). Notice that by the commutative diagram

(5.1), the torsor θt4(t0) is mapped to θt1(t1) under Ȟ1(Uft,
t4G) → Ȟ1(Uft,

t1G′′),

i.e. θt4(t0) is mapped to the trivial t1G′′-torsor. Then, there exists t5 ∈ H1(Uft, G
′)

mapping to θt4(t0). Nevertheless, t5 extends across to a torsor t6 ∈ H1(Xft, G
′),

which maps to a torsor t7 ∈ Ȟ1(Xft,
t3G), which by commutativity restricts to θt4(t0).

However, we also have the commutative square

Ȟ1(Xft, G)

��

θt3 // Ȟ1(Xft,
t3G)

��
Ȟ1(Uft, G)

θt4 // Ȟ1(Uft,
t4G)

from which it is clear that the unique t8 ∈ Ȟ1(Xft, G) such that θt3(t8) = t7 restricts

to t0, i.e. %1
X(G)(t8) = t0, as desired. K

Acknowledgement. The author is deeply thankful to Bhargav Bhatt who taught him

the use of twisted forms to control the fibers of the map Ȟ1(Yft, G)→ Ȟ1(Yft, G/H),

where H is a normal subgroup of G.

5.3 The case of linearly reductive torsors

Remember that linearly reductive group-schemes are extensions of étale groups whose

order is prime to p, by a connected group-scheme D(Γ), where o(Γ) is a power of p.

In view of this, we will focus on µq.

By Kummer Theory, see [Mil80, Chapter III, §4],9 µn-torsors over U are in one-

to-one correspondence with pairs (L, ϕ), where L is an invertible sheaf on U and ϕ

9From analyzing the long exact sequence on flat cohomology derived from (2.1).
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an isomorphism OU →Ln. In fact, the µn-torsor, say V → U , associated to the pair

(L, ϕ) is the cyclic cover Spec
⊕n−1

i=0 Li. More precisely, V is the open subscheme

lying over U of the spectrum of the following semi-local R-algebra C = C(L, ϕ): as

an R-module C(L, ϕ) is given by

C(L, ϕ) :=
n−1⊕
i=0

H0(U,Li)

the multiplication is given by the canonical R-linear maps:

H0(U,Li)⊗R H0(U,Lj)→ H0(U,Li+j) if i+ j < n,

H0(U,Li)⊗R H0(U,Lj)→ H0(U,Li+j−n) if i+ j ≥ n.

The coaction C → C ⊗ O(µn) is given by sending f ∈ H0(U,Li) to f ⊗ ti.

Therefore, the trace TrC/R is the projection onto the zeroth-degree component of the

above direct sum.

For sake of concreteness, we shall realize L as a subsheaf of K(U), the sheaf of

rational functions on U , this by taking a global section OU → L. That is, we may

replace L by OU(D), for some Cartier divisor D on U . Since Z has codimension at

least 2, D extends uniquely to a Weil divisor on X; we do not distinguish notationally

between them though. Thus,

H0(U,Li) = H0
(
U,OU(iD)

)
= R(iD) = {f ∈ K | div(f) + iD ≥ 0}.

Moreover, an isomorphism ϕ : OU → OU(nD) amounts to give a ∈ K× such that

div(a) + nD = 0, which implies R(nD) = R · a ⊂ K. Hence, we can also present the

data of a cyclic cover C = C(L, ϕ) as C = C(D; a, n). In this way, the product is

performed internally by the pairing

R(iD)⊗R R(jD)→ R
(
(i+ j)D

)
, f ⊗ g 7→ f · g

if i+ j < n. In case m := i+ j − n ≥ 0, we must utilize the following isomorphisms

R(iD)⊗R R(jD)→ R
(
(i+ j)D

)
= R(mD + nD)

∼=←− R(mD)⊗R R(nD)

= R(mD)⊗R R · a
∼=←− R

(
mD

)
where the first isomorphism “

∼=←−” follows from the fact that nD is Cartier. Succinctly,

if i+ j ≥ n, the pairing is given by

R(iD)⊗R R(jD)→ R
(
(i+ j − n)D

)
, f ⊗ g 7→ fg

/
a.
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We would like to know in case C is local what its maximal ideal looks like. For

this,

Proposition 5.3.1. If n equals the index of D, then C is local domain and its maximal

ideal is

nC = m⊕
n−1⊕
i=1

R(iD)

In particular, Question 5.1.18 has an affirmative answer, whereby (C, nC ,k) is strongly

F -regular with F -signature s(C) = n · s(R), or only F -pure if R were only assumed

F -pure.

Proof. To see C is local, it suffices to show the R-submodule m⊕
⊕n−1

i=1 R(iD) of C

is an ideal. For this, it is enough to prove that if f ∈ R(iD), g ∈ R(jD) with i, j > 0

and i+ j = n, then fg/a ∈ m.

If fg/a /∈ m, then fg = ua for some unit u ∈ R×. We claim this implies div(f) =

iD and div(g) = jD, contradicting n is the index of D.

To prove the equalities div(f) = iD and div(g) = jD, we notice these can be

checked locally at every height-1 prime ideal of R, then for this we reduce to the

case R is a DVR, with valuation val. Let m be the coefficient of D at m and say

val(f) = im+ ε, val(g) = jm+ δ for some integers ε, δ ≥ 0. Then,

nm = val(a) = val(fg) = (i+ j)m+ ε+ δ = nm+ ε+ δ

which forces ε and δ to be zero, as required.

The rest is a direct consequence of Theorem 3.0.1, including that C is a domain

Corollary 3.0.4.10 K

Remark 5.3.2. Notice (C, nC ,k) is necessarily strictly local. Indeed, any finite local

extension of a Henselian local ring is Henselian; see [Mil80, Chapter I, §4, Corollary

4.3].

Terminology 5.3.3. Observe that R ⊂ C is a torsor (everywhere) if and only if D is

Cartier on X. In such a case, one says the cyclic cover is of Kummer-type. Otherwise,

if n is the index of D, one says the cyclic cover is of Veronese-type.

10An alternate, neat proof that C is a domain can be found in [TW92, Corollary 1.9]. In fact, one
proves the fraction field of C is L = K[t]/(tn − a), and one shows L is a field as a consequence of
the minimality of n.
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We learned from Example 5.1.16 that Kummer-type covers may be a source of

problems for us, whereas from Proposition 5.3.1, we know Veronese-type cyclic covers

are suitable for our purposes. For a general cyclic cover, let n = me · n′, where m is

the index of D, m - n′ and e ≥ 1. Hence, n′D =: D′ has index m too, so that we have

the decomposition

R ⊂ C ′ := C(n′D; a,me) ⊂ C

where R ⊂ C ′ is a µme-torsor away from Z. We can filter further as

R ⊂ C ′′ := C(mn′D; a,me−1) ⊂ C ′.

But now mn′D is Cartier, so that C ′′ is a Kummer-type extension of R, that is

C ′′ ∼= R[t]
/(
tm

e−1 − u
)
, u ∈ R×

Indeed, if mn′D + div(b) = 0, then div
(
bm

e−1)
= div(a), which means bm

e−1
= ua for

some unit u of R. Moreover, C ′ can be written as follows:

C ′ =
m−1⊕
i=1

C ′′ ⊗R R(iD′) = C ′′ ⊕
(
C ′′ ⊗R R(D′)

)
⊕ · · · ⊕

(
C ′′ ⊗R R

(
(m− 1)D′

))
.

If e = 1, we need not deal with C ′′. Otherwise, assuming C is local and remembering

k is perfect, we have that C ′′ has to be local with residue field k, which implies m = q

a power of p and u = vq
e−1

+ x for some v ∈ R× and x ∈ m. If x ∈ Rqe−1
, C ′′ is a

trivial torsor and we could get rid of it, otherwise we saw in Example 5.1.16 how C ′′

may not be strongly F -regular, and so we cannot expect to have an affirmative answer

for Question 5.1.18 for general cyclic covers, unless for instance n = p and we assume

the closed points are k-rational. Nonetheless, we at least have the following.

Lemma 5.3.4. As in Question 5.1.18, let (R,m,k) ⊂ (S, n,k) a µn-quotient that

is a torsor in codimension 1 but not everywhere. Then there exists a nontrivial local

extension (R,m,k) ⊂ (S ′, n′,k), which is of Veronese-type over (R,m). In particular,

(S ′, n′,k) is a strongly F -regular k-rational germ.

Proof. Let D be the divisor associated to the cyclic cover R ⊂ S; we know by hypoth-

esis its index is not 1, for otherwise, R ⊂ S would be a µntorsor everywhere. Thus,

S ′ can be taken to be C(D,m), where m is the index of D. For the last assertion, see

Proposition 5.3.1 and Remark 5.3.2. K
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5.4 On the existence of a maximal cover

We are ready to state our main results. Recall that we assume (R,m,k, K) to be a

strongly F -regular k-rational germ over an algebraically closed field k. We denote by

X the spectrum of R, and by Z ⊂ X a fixed closed subscheme of codimension at least

2 and ideal of definition I ⊂ R.

Theorem 5.4.1. Let (R,m,k) ⊂ (S, n,k) be a G-torsor away from Z but not every-

where, with G◦ abelian. There exists a nontrivial linearly reductive subgroup-scheme

G′ ⊂ G and (R,m,k) ⊂ (S ′, n′,k) a G′-torsor away from Z, such that (S ′, n′)

is a strongly F -regular k-rational germ with s(S ′) = o(G′) · s(R). In particular,

o(G′) ≤ 1/s(R).

Proof. Using that G = G◦ o π0(G), we may decompose the given local extension

(R,m) ⊂ (S, n) as

(R,m) ⊂
(
SG
◦
, n ∩ SG◦

)
⊂ (S, n)

where the former extension is a π0(G)-torsor away from Z. If (R,m) ⊂
(
SG
◦
, n∩SG◦

)
is proper, we are done, for in that case, p - o

(
π0(G)

)
by Proposition 3.0.18, and so

π0(G) is linearly reductive, by Nagata’s theorem [Nag62].

In this manner, we may assume G is connected, and further abelian connected

by hypothesis. Therefore, G is the trivial extension of a multiplicative type group-

scheme by a unipotent one. Then, by Lemma 5.2.3 and Theorem 5.2.1, we may further

assume G is of multiplicative type, as well as connected. Hence, we may assume G

isomorphic to a finite direct sum
⊕

iµpei . Using Lemma 5.2.3 once again , we may

further assume G ∼= µpe . In this way, the result follows directly from Lemma 5.3.4

and Proposition 5.3.1. K

By iteration of Theorem 5.4.1, we obtain our main result on the existence of a

maximal cover.

Theorem 5.4.2 (Main result: existence of a maximal cover). For any strongly F -

regular k-rational germ (R,m,k, K), there exists a chain of finite extensions of

strongly F -regular strictly local domains

(R,m,k, K) ( (S1, n1,k, L1) ( · · · ( (Lt, nt,k, Lt) = (S?, n?,k, L?)
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where each intermediate extension (Si, ni,k) ( (Si+1, ni+1,k) is a Gi-torsor away

from ISi, such that: each Gi is a linearly reductive group-scheme, [L? : K] is at most

1/s(R), and any further G-torsor over (S?, n?) away from IS?, such that G◦ is either

trigonalizable or nilpotent, is a torsor everywhere.

Proof. By iterating Theorem 5.4.1 until s(R) is exhausted, and using our preliminary

discussion in Proposition 2.3.5, we obtain the result for the case of abelian connected

components at the identity. It remains to prove it for both trigonalizable and nilpotent

connected components at the identity. As in the proof of Theorem 5.4.1, we may

assume G is connected and so either trigonalizable or nilpotent. Hence, it suffices

to prove %X?(G) : Ȟ1(X?
ft, G) → Ȟ1(U?

ft, G) is surjective for all trigonalizable and all

nilpotent group-schemes G.

If G is trigonalizable, it has a nontrivial normal subgroup G′ that is isomorphic

to either αp or (Z/pZ)⊕m for some m; see [Mil15, Corollary 17.25]. If G′ = G, we

are done, otherwise we may proceed by induction on the order as G′′ := G/G′ is

trigonalizable.

If G is nilpotent, it has a nontrivial central subgroup G′ (so normal and abelian)

whose quotient is nilpotent. If G = G′, we are done, otherwise we may proceed by

induction on the order.

In either case, the proofs are verbatim the same as our second proof of Theo-

rem 5.2.1. The only difference is explaining why the twisted form of G′ by a G-torsor

is trivial. In the proof of Theorem 5.2.1, we had this because G′ was taken to be cen-

tral. Hence, the same works for the nilpotent case. The trigonalizable case requires a

different explanation though. The following claim does the job, using Y equal to X?

or U?.

Claim 5.4.3. If Y is a scheme with torsion-free Picard group and trivial étale funda-

mental group, then the map Ȟ1(Yft, G)→ Ȟ1(Yft,AutG′) induced by G→ AutG′ is

trivial if either G′ = αp or if AutG′ is finite étale, e.g. G′ = (Z/pZ)⊕m.

Proof of claim. Notice that Ȟ1(Yft,AutG′) = 0 if AutG′ is finite étale; by the as-

sumption on the étale fundamental group of Y , this case is then trivial. On the other

hand, observe that Autαp = Gm; therefore, Ȟ1(Yft,Autαp) = PicY . Since G is

finite, the map Ȟ1(Yft, G)→ PicY sends G-torsors to torsion line bundles, which are

trivial by assumption. This proves the claim. K
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This proves the theorem. K

Remark 5.4.4 (The relation with Esnault and Viehweg’s local Nori fundamental

group-scheme). It is natural to ask what the relationship is between our maximal

cover R ⊂ S? and Esnault and Viehweg’s construction of the local Nori fundamental

group-scheme in [EV10]. To simplify our discussion, let us consider abelian group-

schemes only. In this case, our cover has trivial abelian local Nori fundamental

group-scheme πN,ab
1,loc (U?, X?, x?). Nevertheless, it is not clear to the author whether

or not this implies that πN,ab
1,loc (U,X, x) is finite. We are deeply thankful to Christian

Liedtke who pointed out to us an example suggesting this should not be always the

case. He kindly shared with us the following example of surface D4 singularity in

characteristic 2, which is a Z/2Z-quotient of Â2
k but admits a nontrivial µ2-torsor.

The singularity is kJx, y, xK/(z2 − xyz − x2y − xy2); the Weil divisor corresponding

to the prime ideal (x, z) has index 2. Therefore, its local abelian Nori fundamental

group-scheme cannot be Z/2Z since it needs to take into account µ2. Nonetheless,

this singularity, though F -pure, is not strongly F -regular. We invite the reader to

look at [ST14, Example 7.12] for a closer look into this particular singularity. In fact,

this was the same example we used to proof the necessity of the surjectivity of T in

Example 3.0.15.
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Chapter 6

Additional corollaries of the
transformation rule

In the previous two chapters, we learned how to use the transformation rule for

the F -signature under finite covers to study finite torsors over strongly F -regular

singularities, the main topic of this dissertation. In fact, it was in that context that

this transformation rule was first discovered and motivated. The goal in this chapter

is to give additional consequences of this transformation rule that are interesting on

their own.

6.1 Purity of the Branch Locus

We start with what is perhaps the most fundamental of these additional corollaries

of the transformation rule. This is a new purity of the branch locus theorem for

mild singularities in positive characteristic. By mild we mean singularities with

F -signature larger than 1/2. In particular, we give a new proof for the classical

Zariski–Nagata–Auslander purity of the branch locus theorem for regular schemes,

[Zar58, Nag58, Aus62].

As a historical aside, it is worth mentioning that E. Kunz noticed in [Kun69b]

that if a local ring R is such that F e
∗R is flat over R for some (then all) e ∈ N, then R

satisfies purity of the branch locus. However, in a footnote, he mentioned that in fact,

this condition characterizes regularity in positive characteristic, and the forthcoming

paper [Kun69a] would contain a proof of this. In this way, we can see how seeking

for a simple proof for the purity of the branch locus inspired Kunz’s fundamental

characterization of regularity in positive characteristic by the flatness of the Frobenius

endomorphism. Our purity result can then be thought as a generalization of his, for

ours roughly says that if the R-modules F e
∗R are asymptotically more than “half free,”

85
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then purity of the branch locus holds.

It is worth comparing with other results about purity for singular rings [Gro63,

Cut95]. These results are, however, of a different nature. For example, Grothendieck

proved purity of the branch locus for complete intersection of dimension ≥ 3. On

the other hand, Cutkosky’s purity result is an improvement of the one for complete

intersections.

Before establishing our purity result, we would like to give separately the key

ingredient for purity. Roughly speaking, it says that the F -signature goes up under

the presence of ramification.

Corollary 6.1.1 (The F -signature goes up under the presence of ramification). Sup-

pose that (R,m,k, K) ⊂ (S, n,l, L) is a local extension of normal domains of dimen-

sion d ≥ 2. If the cover f : SpecS → SpecR is quasi-étale but not étale, then we have

that s(S, f ∗∆) ≥ 2 · s(R,∆) for all Q-divisor ∆ on SpecR.

Proof. We may assume without lost of generality that (R,∆) is strongly F -regular

(in particular F -pure), otherwise the statement is trivial.

Now, the transformation rule Theorem 3.0.1 gives that s(S) = n · s(R) with

n = [L : K]
/

[l : k]. By Proposition 3.0.17, n is an integer. It remains to prove

n 6= 1. However, if [L : K] = [l : k], then the extension is free; see [Har77, Chapter

II, Lemma 2.8]. Hence, it is étale everywhere, by purity of faithfully flat morphisms

[AK70, Chapter VI, Theorem 6.8]. K

In this way, we have that purity for the branch locus holds for singularities so that

s(R,∆) > 1/2.

Corollary 6.1.2 (Purity of the branch locus for mild singularities). Let (R,m,k,∆)

be a local ring with s(R,∆) > 1/2, then any quasi-étale cover Y → SpecR is étale.

Proof. We may assume without lost of generality that ∆ = 0, for s(R) ≥ s(R,∆).

Let Y = SpecS and suppose for sake of contradiction that R ⊂ S is not étale.

By tensoring R ⊂ S by Rh
m, the henselization of R at m, we get a finite extension

Rh
m ⊂ Rh

m ⊗R S = S1 × · · · × Sn where the rings Si are local. Now, since the (quasi-

étale) extension Rh
m ⊂ S1 × · · ·Sn is not étale, at least one of the finite extensions

Rh
m ⊂ Si is not étale (but quasi-étale). Therefore,

1 ≥ s(Si) ≥ 2 · s
(
Rh

m

)
= 2 · s(R) > 2 · 1

2
= 1
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which is a contradiction. Indeed, s
(
Rh

m

)
= s(R) because R→ Rh

m is flat with regular

closed fiber; see [Yao06, Theorem 5.6], [CST17, Theorem 3.5]. K

6.2 Effective upper bounds on divisor torsion

In this section, we bound the torsion of the divisor class group of a strongly F -regular

local ring, and a globally F -regular projective variety. We begin with the local part.

Corollary 6.2.1. Let (R,m,k) be a local F -regular ring with Z ⊂ X = SpecR a

closed subscheme of codimension at least 2 and open complement U . The torsion of

the Picard group PicU = ClR is bounded by 1/s(R), i.e. if L ∈ PicU has index n,

then n ≤ 1/s(R). In particular, if s(R) > 1/2, then PicU is torsion-free.

Proof. Let L ∈ PicU with index n, and say ϕ : OU →Ln is an isomorphism. Then

by Proposition 5.3.1, we have that n · s(R) = s
(
C(L, ϕ)

)
≤ 1. K

Corollary 6.2.2. Let A be an ample line bundle on a globally F -regular projective

variety Y over k = kalg, and let A :=
⊕

i≥0H
0(Y,Ai) be the associated section ring

of Y . If A = Ln for another line bundle L, then n ≤ 1/s(AO), where O ∈ SpecA =:

C(Y ) is the vertex point of the affine cone C(Y ).

Proof. First of all, remember Y is globally F -regular if and only if A is strongly F -

regular, by the work [SS10]. In particular, s(AO) > 0. Let B :=
⊕

i≥0H
0(Y,Li).

Then A is the n-th Veronese subring of B. By taking (strict) Henselizations at the

origin, we get an inclusion Ash
O ⊂ Bsh

O , which is cyclic of Veronese-type of index n.

Notice Ash
O is a strongly F -regular k-rational germ of F -signature s(AO).1 Therefore,

1 ≥ s(Bsh
O ) = n · s(A). K

The global part then is:

Corollary 6.2.3. With the same setup as in Corollary 6.2.2, the torsion of ClY , the

divisor class group of Y , is bounded by 1/s(AO).

Proof. We simply apply [Har77, Chapter II, Exercise 6.3]. Thus, we have a short

exact sequence

0→ Z u→ ClY
v→ Cl

(
C(Y )

)
→ 0.

1For, AO → Ash
O is flat with regular closed fiber, then use [Yao06, Theorem 5.6], [CST17, Theorem

3.5].
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On the other hand, Cl
(
C(Y )

) ∼= Cl
(
SpecAO

) ∼= PicU , where U is the regular locus

of SpecAO. Therefore, by Corollary 6.2.1, the torsion of this group is bounded by

1/s(AO).

These two facts together imply the torsion of ClY is bounded by 1/s(AO). Indeed,

let D ∈ ClY of order n. Then, nv(D) = v(nD) = 0, so we have that the index of

v(D), say m ≤ 1/s(AO), divides n. In particular, mD belongs to the kernel of v, so

there is l ∈ Z such that u(l) = mD, but then (n/m) · u(l) = (n/m)mD = nD = 0,

i.e. u((n/m)l) = 0, which implies l = 0. Hence, mD = 0, so n | m, therefore n = m

and n ≤ s(AO) as desired. K

Remark 6.2.4. Since Y in Corollary 6.2.3 is normal, we have PicY ⊂ ClY . Therefore,

this result also bounds the torsion of the Picard group of Y .

Recall that globally F -regular varieties are an analog of log-Fano varieties in

characteristic zero; see [SS10] for full details on this analogy. It is in this regard that

Corollary 6.2.3 should be compared to [Xu14, Proposition 1]. Concretely, if D is an

order n Weil divisor2 on (Y,∆), a log-Fano pair, then the corresponding Veronese-type

cyclic cover Y ′ → Y defines a finite surjective morphism of degree n. Therefore, as a

direct application of [Xu14, Proposition 1] and its proof, we have

n ≤ C/vol(KY + ∆)

where C = C(r, dimY ) is a constant depending only on r the index of KY + ∆ (as

Q-Cartier divisor) and the dimension of Y . This constant is shown to exist in the

fundamental paper [HMX14, Corollary 1.8]. Then, it is natural to ask:

Question 6.2.5. What is the relation between the numbers 1/s(AO) and C/vol(KY +

∆)?

6.3 Veronese-type cyclic covers of F -singularities

Let (R,m,k, K) be a Q-Gorenstein local domain with canonical divisor KR of index

n. Then, the corresponding Veronese-type cyclic cover C(KR;n) is called a canonical

cover of (R,m). As explained in Section 5.3, the Veronese-type cyclic cover associated

2Meaning nD ∼ 0 and n is the smallest positive integer with this property.
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to a divisor D on SpecR of index n is given by the local ring

C = C(D;n) =
n−1⊕
i=0

R(iD)

with maximal ideal nC = m⊕
⊕n−1

i=1 R(iD), and residue field k.

In [Wat91], K.-i. Watanabe proved that if n is prime-to-p, then C(KR;n) is strongly

F -regular (resp. F -pure) if R is strongly F -regular (resp. F -pure). In the following

corollary, we proved this is the case even if p divides n for all Veronese-type cyclic

covers.

Corollary 6.3.1 (Strong F -regularity and F -purity transfer to Veronese-type cyclic

covers). Let (R,m,k, K) be a normal local domain of dimension at least 2. For any

Q-Cartier divisor D on SpecR of index n, we have that C(D;n) is strongly F -regular

(resp. F -pure) if and only if R is strongly F -regular (resp. F -pure), even if p divides

n. Moreover, s(C) = n · s(R).

Proof. We have that (R,m,k) ⊂ (C, nC ,k) is a µn-torsor in codimension 1; there-

fore, the transformation rule Theorem 3.0.1 applies with T = TrC/R equal to the

projection onto the zeroth-degree direct summand. One then applies Corollary 3.0.4

and Scholium 3.0.9. K

Remark 6.3.2. It is worth remarking that F -rationality (nor F -injectivity) are not

necessarily transfered to Veronese-type cyclic covers. Indeed, A. Singh provided coun-

terexamples for this in [Sin03].

Moreover, we also obtain effective upper bounds on the index of Q-Cartier divisors

and a simultaneous index-one cover result as in [GKP16, Theorem 1.10].

Corollary 6.3.3 (Simultaneous index-one cover). Let R ⊂ S? be as in Theorem 5.4.2

with I ⊂ R cutting out the singular locus of X = SpecR, and let h : Y ? → X be

the induced morphism. If D is a Q-divisor Cartier divisor on X of index n, then

n ≤ 1/s(R). Moreover, h∗D is a Cartier divisor on Y ?.

Proof. The bound n ≥ 1/s(R) follows at once from Corollary 6.3.1. Observe h∗D

must be Cartier because if its index is not 1, then its corresponding Veronese-type

cyclic cover is a cover over Y ? violating its maximality. K
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Chapter 7

Further developments and questions

In this final chapter, we conclude by briefly summarizing some recent, interesting

research that has arisen from some of the results treated in this dissertation. Also, we

discuss some additional questions originated from our results.

7.1 Global aspects

In [GKP16], Greb–Kebekus–Peternell used Xu’s local result [Xu14] to prove that

for a quasi-projective variety X/C with KLT singularities, any sequence of finite

quasi-étale and generically Galois covers eventually becomes étale. Equivalently, for

any quasi-projective KLT complex variety, there exists a finite quasi-étale generically

Galois cover h : Y ? → X such that any further quasi-étale cover Y → Y ? is actually

étale. Their proof was essentially based on using a Whitney stratification to bootstrap

Xu’s local result globally.

Inspired by the aforementioned local-global interplay, in [BCRG+17], the author,

in collaboration with B. Bhatt, P. Graff, K. Schwede, and K. Tucker, studied the

ramifications of Theorem 4.0.1 to the global properties of spaces with strongly F -

regular singularities. In this paper, building on Theorem 4.0.1, a stratification theorem

of O. Gabber [ILO14, Exposé XXI, Théorème 1.1, 1.3], and recent work on the non-

local behavior of F -signature [DPY16], we proved the analog of the main result of

Greb–Kebekus–Peternell [GKP16] in characteristic p > 0.

Theorem 7.1.1 ([BCRG+17]). Suppose X is an F -finite Noetherian integral scheme

with only strongly F -regular singularities. Suppose we are given a sequence of finite

quasi-étale covers of normal integral schemes

X
γ1←− Y1

γ2←− Y2
γ3←− · · ·

91
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such that each Xi/X is generically Galois. Then, all but finitely many γi are étale.

In particular, there exists a finite quasi-étale generically Galois cover Y ? → X so

that any further finite quasi-étale cover Y → Y ? is étale. Equivalently, the map

πét
1

(
Y ?

reg

)
→ πét

1

(
Y ?
)

induced by the inclusion of the regular locus is an isomorphism.

We would like to point out that a comprehensive treatment of the main result in

both [GKP16] and [BCRG+17] have been given in [Sti17] by C. Stibitz. He used de

Jong’s alterations [dJ96] to find a common replacement for the Whitney stratification

in the complex case and Gabber’s constructibility in positive characteristic.

It is then natural to pose the following question.

Question 7.1.2. What are the global consequences of bootstrapping our local results

in Chapter 5 globally? More concretelly, given a scheme X with only strongly F -

regular singularities, does there exist a suitably nice cover Y ? → X such that every

abelian (trigonalizable, nilpotent) finite torsor over the regular locus of Y ? is a torsor

everywhere?

More specifically, we can always formulate the following question.

Question 7.1.3. Is it possible to bootstrap Corollary 6.3.3 to obtain a global index

for Q-Cartier divisors on an F -finite Noetherian k-scheme with strongly F -regular

singularities as in [GKP16, Remark 1.11], and [BCRG+17, Corollary 4.8]? That is, is

it possible to use Corollary 6.3.3 to obtain an N > 0 as in [BCRG+17, Corollary 4.8

(b)] that works for all Q-divisors and not only for Z(p)-divisors?

7.2 Connection to characteristic zero

Let X/k be a finite type k-scheme over an algebraically closed field k and let

x ∈ X(k) be a k-rational closed point, say dimX ≥ 2. To simplify notation, let

πloc
1 (X, x) be the étale fundamental group of Spec(ÔX,x)r{x}. Then, from Xu’s [Xu14,

Theorem 1], we know that πloc
1 (X, x) is finite if k = C and X has KLT singularities.

On the other hand, from Theorem 4.0.1, we know πloc
1 (X, x) is finite if k has positive

characteristic and X has strongly F -regular singularities. Beside the similarities

between both in results, there is a considerable contrast in their proofs. Namely, Xu’s

uses fundamental advances in the minimal model program [BCHM10], whereas ours is

quite more elementary. Therefore, it is natural to wonder whether one could show Xu’s

result from ours by spreading out to positive characteristic. Affirmatively, B. Bhatt,
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O. Gabber, and M. Olsson [BGO17] introduced a spreading out technique for deducing

finiteness results for étale fundamental groups in characteristic zero. Their spreading

out technique is the following

Theorem 7.2.1 ([BGO17]). With (X, x) as above and k = C, spread out the pair

(X, x) to (XA, xA) over a finite type Z-algebra A ⊂ C. For a geometric point ȳ →
SpecA, denote by (Xȳ, xȳ) the pullback of (XA, xA) to ȳ. If there is c ∈ N and a dense

open subset U ⊂ SpecA such that for all geometric closed point ȳ → U , we have

#πloc
1 (Xȳ, xȳ)

(pȳ) ≤ pcȳ

where pȳ is the residual characteristic of ȳ, and πloc
1 (Xȳ, xȳ)

(pȳ) denotes the maximal

prime-to-pȳ quotient of πloc
1 (Xȳ, xȳ). Then, πloc

1 (X, x) is finite.

Then, [Xu14, Theorem 1] follows from Theorem 4.0.1 by proving s(Xȳ, xȳ) ≥ 1/pdȳ

for some d. This is precisely what Bhatt–Gabber–Olsson do in [BGO17, Proposition

6.4].

7.3 Beyond trigonalizable and nilpotent torsors

At the moment, it is unclear to the author how to push Theorem 5.4.2 beyond the

trigonalizable and nilpotent cases, which are important instances of the solvable case.

The general solvable case for example remains open.

Recall that in both of the aforementioned solvable cases, our strategy to understand

the surjectivity of %1
X(G) : Ȟ1(Xft, G)→ Ȟ1(Uft, G) was to analyze it first in the case G

is simple abelian to use H2(Xft, G) = 0, along twisted forms, to extend our knowledge

from the simple abelian case to those more general solvable cases.

On the other hand, the author is very grateful to Axel Stäbler who made him aware

of the explicit classification of the (connected) simple finite rank-1 group-schemes

via the classification of simple restricted Lie algebras in positive characteristic by

Block–Wilson–Premet–Strade [BW88], [SW91], [PS08]. We recommend [Viv10] for a

very nice, brief account. Then, letting %1
X(G) : Ȟ1(Xft, G) → Ȟ1(Uft, G) denote the

natural restriction map of G-torsors as in Chapter 5, the following questions are of

great interest:

Question 7.3.1. For which connected simple finite rank-1 group-schemes G is %1
X(G)

onto?
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Question 7.3.2. If G is a connected finite rank-1 group-scheme so that %1
X(G) is not

surjective, does Question 5.1.18 have an affirmative answer?

Question 7.3.3. Given a connected simple finite rank-1 group-scheme G, for which

type of (F -)singularity X, if any, is %1
X(G) naturally surjective?

Last but not least,

Question 7.3.4. Is Ȟ i(Xft, G) trivial for all finite group-schemes G and all germs X?

Based on our experience working in the abelian case, it seems reasonable to expect

the answer for Question 7.3.1 to be: for all the Cartan-type ones, and not necessarily for

the Classical-type ones. However, for the Classical-type ones, we expect Question 7.3.1

to have an affirmative answer.

7.4 Transforming F -signature of Cartier algebras

It is natural to ask what is the most general version of our transformation rule for

the F -signature Theorem 3.0.1. Even better, it is natural to ask what is the most

natural framework upon which our proof for Theorem 3.0.1, based on duality for finite

morphisms, can be expressed. In a work in preparation with A. Stäbler, we seek for

that naturality. We prove that a natural framework to describe the transformation

rule is the formalism of Cartier algebras and modules, and Blickle-Stäbler’s f ∗ and

f ! functors [BS16]. We assume familiarity of the reader with the theory of Cartier

algebras [Bli13, Sch11, BB11]. For example, we prove the following transformation

rule

Theorem 7.4.1 (Transformation rule for the F -signature of Cartier algebras under

finite covers). Let (R,m,k, K) ⊂ (S, n,l, L) be a local finite extension of normal

domains, and f : Y → X the induced finite morphisms. Choose a surjective section

T ∈ ωS/R such that T (n) ⊂ m. If C ⊂ CR is a Cartier algebra consisting of

T -transposable p−1-linear maps, then the following formula holds

[l : k] · s(S, f ∗C) = [L : K] · s(R,C)

Moreover, (S, f ∗C) is F -pure if and only if so is (R,C).

The last sentence should not be considered as a minor detail. In fact, it explains

why we could not get a full converse statement in Scholium 3.0.9. The reason is that
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C∆∗ is not the pullback of C∆, c.f. Remark 3.0.8. The perseverence of F -purity

(and strong F -regularity) that is natural to expect is the one between the F -purity of

the Cartier algebras C∆ and f ∗C∆. In fact, in the same setting as Theorem 7.4.1,

we prove that the splitting prime of (R,C) is the contraction of the splitting prime

of (S, f ∗C). As an application, we also obtain the following transformation rule for

splitting ratios[
k(n) : k(m)

]
· r
(
S, f ∗C

)
=
[
k
(
p(f ∗C)

)
: k
(
p(C)

)]
· r(R,C)

where p(−) denotes the splitting prime of a Cartier algebra and r(−) its splitting

ratio.

As an application of this transformation rule, we obtain the following result on

tame fundamental groups.

7.4.1 Tame fundamental groups

We consider R, X, and U as in Chapter 5, but now we additionally consider a prime

Weil divisor P on U , which extends to a unique prime divisor on X. We assume that

P is a minimal center of F -purity [Sch10a]. Then, we consider the Galois category

GP (X,U) of finite covers over U that are étale away from P but tamely ramified

over P [GM71, §2.4], [KS10, §7]. It is of our interest to study the fundamental group

πt,P
1 (X,U) associated to the Galois category GP (X,U). For this, we have the following

Theorem 7.4.2. There exists an exact sequence of groups

Ẑ(p) → πt,P
1 (X,U)→ G→ 1

where G is a finite group of order at most 1
/
r
(
R,C[P ]

)
, and Ẑ(p) is the prime-to-p part

of the profinite completion of Z. We denote by C[P ] the Cartier algebra of P -compatible

p−1-linear maps.
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